Page 105 - Mechanical design of microresonators _ modeling and applications
P. 105
0-07-145538-8_CH02_104_08/30/05
Basic Members: Lumped- and Distributed-Parameter Modeling and Design
104 Chapter Two
Similarly, the first resonant frequency of a circular membrane of radius
R and thickness t is
2.404 s
Ȧ = (2.219)
R ȡt
References
1. W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th
ed., McGraw-Hill, New York, 2002.
2. N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press,
Boca Raton, Fla., 2002.
3. N. Lobontiu and E. Garcia, Mechanics of Microelectromechanical Systems,
Kluwer Academic Press, New York, 2004.
4. N. Lobontiu, E. Garcia, M. Hardau, and N. Bal, Stiffness characterization of
corner-filleted flexure hinges, Review of Scientific Instruments, 75(11), 2004,
pp. 4896—4905.
5. S. Timoshenko, Vibration Problems in Engineering, D. Van Nostrand
Company, New York, 1928.
6. W. T. Thomson, Theory of Vibration with Applications, 2nd ed., Prentice-
Hall, Englewood Cliffs, N.J., 1981.
7. A. P. Boresi, R. J. Schmidt, and O. M. Sidebottom, Advanced Mechanics of
Materials, 5th ed., Wiley, New York, 1993.
8. F. P. Beer, and E. R. Johnston, Jr., Vector Mechanics for Engineers–
Dynamics, McGraw-Hill, Boston, 1997.
9. F. Ayazi and K. Najafi, A HARPSS polysilicon vibrating ring gyroscope,
Journal of Microelectromechanical Systems, 10(2), 2001, pp. 169—179.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.