Page 311 - Mechanical design of microresonators _ modeling and applications
P. 311

0-07-145538-8_CH06_310_08/30/05



                                         Microcantilever and Microbridge Systems for Mass Detection

                              310   Chapter Six

                                                  l
                                                                l
                                            1 y1(
                                                   s
                                                                1
                                                              ฒ
                                             1
                                     u   =  E I ฒ M  ˜M 1  dx + M  ˜M 2  dx
                                      1z            1 ˜F         2  ˜F
                                                 0     1z      l     1z
                                                               s
                                                l                      l +l p
                                                                       1
                                                    ˜M 4        1          ˜M 3
                                                        dx +
                                           +  ฒ  M 4  ˜F 1z ) (EI )  ฒ  M 3  ˜F  dx
                                               l +l              y e  l      1z
                                               1  p l                 1
                                            1 y1(  s  ˜M 1      l 1  ˜M 2
                                             1
                                                              ฒ
                                     ș   =  E I ฒ M       dx + M        dx
                                      1y            1  ˜M         2  ˜M
                                                 0      1y     l      1y
                                                                s
                                                                                         (6.27)
                                                                        l +l
                                                l    ˜M                  1  p  ˜M
                                                                 1
                                                       4
                                                         dx +
                                           +  ฒ  M 4 ˜M 1y ) (EI )    ฒ  M 3  ˜M  3  dx
                                               l +l               y e  l       1y
                                               1  p                    1
                                            1 y1(  l 1  ˜M 2     l    ˜M 2z )
                                                                        4
                                             1
                                     u 2z  =  E I ฒ M 2  ˜F  dx +  ฒ  M 4 ˜F  dx
                                                 l      2z      l +l
                                                  s             1  p
                                                      l +l
                                                      1  p
                                               1          ˜M 3
                                           +        ฒ  M      dx
                                             (EI )       3  ˜F
                                                y e         2z
                                                     l
                                                     1
                              The equivalent rigidity  is calculated over the length  l p  where  the
                              attached mass and microcantilever do superimpose and, as shown in a
                              previous chapter, is equal to
                                   (EI ) = E I  + z A (z – z ) + E  I  + z A (z – z )
                                     y e   1 y1   1 1 1    N     p yp   p  p  p  N        (6.28)
                              The bending moments M  through M , which enter Eqs. (6.27), are
                                                                4
                                                     1
                                    M =– M      – F x
                                      1      1y    1z
                                    M =– M      – F x – F (x – l )
                                      2      1y    1z    2z     s
                                                                    q (x – l ) 2
                                    M =– M      – F x – F (x – l ) –  z  1               (6.29)
                                      3      1y    1z    2z     s      2
                                                                    z p (
                                                                              2 )
                                                                             1
                                    M =– M   1y  – F x – F (x – l ) – q l x –  l + l p
                                      4
                                                   1z
                                                         2z
                                                                s
                              and the corresponding partial derivatives of the same Eqs. (6.27) can
                              simply be calculated from Eqs. (6.29).
                           Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
                                      Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
                                        Any use is subject to the Terms of Use as given at the website.
   306   307   308   309   310   311   312   313   314   315   316