Page 300 - Mechanics of Asphalt Microstructure and Micromechanics
P. 300

292   Ch a p t e r  N i n e



                     m                              Maxwell    Kelvin
                      1
                                                     section   section
              Cm
                 n              Maxwell     m
                                 section      1
               Km                                                Kk
                  n                                                k
                                Kelvin
             Ck            Kk
                n            n
                                section       f k
                                                    Cm
                                                       k  Km k
                                                                 Ck
                                                                    k
                     m                                                  m
                       2                                                  2

                  Ball-Ball  Ball-Wall                              Ball-Ball  Ball-Wall
                     Normal Direction                                 Shear Direction


              FIGURE 9.6  The Burger model (normal and shear stiffness) used in DEM modeling (Itasca, 2005).



                 The overall controlling equation between the contact force f and displacement u of
              Burger’s model (a second-order differential equation) is presented in Equation 9-13.
              Using the Laplace transform method from Chapter 6, the equation can be convenient-
              ly solved.
                               ⎡  C   ⎛ 1     ⎞ ⎤ ·  CC           CC
                                                               ·
                            f + ⎢  k  + C m ⎜  +  1  ⎟  f ⎥ +  k  m ¨ f f =± C u ±  k  m  u ¨  (9-13)
                               ⎣ ⎢ K k  ⎝  K k  K ⎠ ⎥  KK m   m    K  k
                                             m ⎦
                                                     k

              9.2.3 Solution Scheme
              With the above preparations, the two sets of equations, including the translational mo-
              tion (Equation 9-14) and rotational motion (Equation 9-15), can be solved.
                                            F =  m x −( ¨  g )                   (9-14)
                                             i     i  i
                                               ·
                                        M = ω   + ( I −  I ω ω)
                                             I
                                          1  1  1  3  2  3  2
                                               ·
                                        M = ω    + ( I −  I ω ω
                                                       )
                                             I
                                          2   2  2  1  3  1  3
                                               ·
                                        M = ω   + ( I −  I ω ω)                  (9-15)
                                             I
                                          3  3  3  2  1  2  1
                                       ·
                                 M =  Iω  = ( 2  mR ω (rotational motion)        (9-16)
                                               2
                                               )
                                   i   i         i
                                          5
                 A finite difference method is usually applied to solve the above equations.
   295   296   297   298   299   300   301   302   303   304   305