Page 131 - Mechatronic Systems Modelling and Simulation with HDLs
P. 131

120                     6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES



                                      z     x    r           r z1
                                                 z0 u y0
                                          y                 u y1
               Figure 6.8  Degrees of freedom of the shear-resistant beam element at the nodes k and l: u y
               (deflection in y-direction), r z (rotation about the z-axis)
               the beam section i. The beam load is concentrated by p i0 and p i1 on the nodes 0
               and 1 of the beam element. In the shear-resistant case and for small deflections
                                                                                th
               the stiffness matrix K i , the mass matrix M i and the load vector p i of the i beam
               element are independent of the deflection. If we select the interpolation functions
               h 1 ... h 4 in the variables ξ for the approximation of the continuous displacements
               as follows:

                                                      2
                                         h 1 (ξ) = 1 − 3ξ + 2ξ 3
                                                          2
                                         h 2 (ξ) =−ξ(1 − ξ) l i
                                                                                 (6.35)
                                                   2
                                         h 3 (ξ) = 3ξ − 2ξ 3
                                                  2
                                         h 4 (ξ) = ξ (1 − ξ)l i
               then we find the following element matrices and vectors, see Gasch and Knothe [113]:
                                                               
                                          12   −6l i  −12   −6l i
                                    B i  −6l    4l 2  6l i    2 
                                       
                                                               i
                               K i =              i          2l 
                                     3
                                     l  −12     6l i  12       
                                       
                                     i                        6l i 
                                         −6l     2l 2  6l i  4l 2
                                                  i            i
                                                                    
                                           156    −22l i    54   13l i
                                                     2             2 
                                    µ i l i  −22l i  4l i  −13l i  −3l 
                                                                    i
                               M i =                                           (6.36)
                                            54    −13l i   156
                                    420                         22l i 
                                            13l i  −3l 2   22l i  4l 2
                                                       i            i
                                                              
                                            7/20            3/20
                                                              
                                         −l i /20      −l i /30 
                               p i = p i0 l i    + p i1 l i   
                                           3/20          7/20 
                                            l i /3          l i /20
               The equation system for such an element thus takes the form:
                                                                                 (6.37)
                                           M i ¨u i + K i u i = p i
               where
                                         u i = [u y0 , r z0 , u y1 , r z1 ] T

               where u i represents the element displacement vector, and thus the degrees of freedom.
   126   127   128   129   130   131   132   133   134   135   136