Page 181 -
P. 181

5.2 Theoretical Analysis  171
                            every H component is surrounded by four circulating E components. The po-
                            sition of the electric- and magnetic-field vector components is approximately
                            a cubic unit of the Yee space lattice.
                               We now rewrite the vector components of (5.1), yieldingthe following
                            system of six coupled scalar (5.4)–(5.9) [5.15].

                                                      1
                                               ∂H x      ∂E y   ∂E z
                                                   =         −       ,                     (5.4)
                                                ∂t    µ   ∂z    ∂y
                                                      1
                                               ∂H y      ∂E z   ∂E x
                                                   =         −       ,                     (5.5)
                                                ∂t    µ   ∂x    ∂z
                                                      1
                                               ∂H z      ∂E x   ∂E y
                                                   =         −       ,                     (5.6)
                                                ∂t    µ   ∂y    ∂x
                                               ∂E x   1     ∂H z  ∂H y
                                                   =         −      − σE x ,               (5.7)
                                                ∂t    ε   ∂y    ∂z

                                               ∂E y   1  ∂H x   ∂H z
                                                   =         −      − σE y ,               (5.8)
                                                ∂t    ε   ∂z    ∂y

                                               ∂E z   1  ∂H y   ∂H x
                                                   =         −      − σE z .               (5.9)
                                                ∂t    ε   ∂x    ∂y
                            Here, from (5.3) we define the function F on (i, j, k) at the time increment n
                            as
                                              n
                                             F (i, j, k)= F (i∆x, j∆y, k∆z, n∆t) .        (5.10)
                            The space and time derivatives are given as
                                                             1
                                                                            1
                                           n

                                        ∂F (i, j, k)  F n    i + ,j,k − F n    i − ,j,k
                                                                            2
                                                             2
                                                   =                              ,       (5.11)
                                            ∂x                    ∆x
                                           n
                                        ∂F (i, j, k)  F n+  1 2 (i, j, k) − F  n−  1 2 (i, j, k)
                                                   =                           .          (5.12)
                                            ∂t                   ∆t
                               The space derivative (5.11) has the same form for y, z and the time deriv-
                            ative (5.12) is given between half an increment and half a decrement. Consid-
                            ering F as E or H, (5.4)–(5.9) are expressed as the time-steppingexpressions
                            (5.13)–(5.18).

                               n+  1      1     1      n−  1     1     1           ∆t
                             H x  2  i, j + ,k +   = H x  2  i, j + ,k +  +         1     1
                                          2     2                2     2     µ i, j + ,k +
                                                                                    2     2
                                                          n      1           n      1
                                                        E y  i, j + ,k +1 − E y  i, j + ,k
                                                                                    2
                                                                 2
                                                     ×
                                                                       ∆z
                                                           E z n    i, j, k +  1 2     − E z n    i, j +1,k +  1 2
                                                         +                                   ,
                                                                          ∆y
                                                                                          (5.13)
   176   177   178   179   180   181   182   183   184   185   186