Page 81 -
P. 81

70    2 Extremely Short-External-Cavity Laser Diode
                                                                      Center plane of
                                                                      each layer



                                                                          d

                                          r1
                                            r2                         P 1
                                             r3
                                                                    P 2
                                                                P 3




                            Fig. 2.47. Deflection of a bimorph MC and internal stress due to temperature
                            change


                                                       3
                               where M i = E i I i /r i (I i = bt /12) is the moment of inertia of i th layer, h i
                                                       i
                            is the distance between the center plane of the MC and that of the i th layer
                            and r i is the radius of curvature of the i th layer of the MC, and h 1 + h 2 =
                            (t 1 + t 2 )/2, −h 2 + h 3 =(t 2 + t 3 )/2,h 1 + h 3 =(t 1 +2t 2 + t 3 )/2.
                               At the interface between the two layers, the normal strain of the materials
                            must be the same. Therefore
                                                   P 1    t 1           P 2    t 2
                                          α 1 ∆T −     −     = α 2 ∆T −     +     ,       (2.31)
                                                 bE 1 t 1  2r 1        bE 2 t 2  2r 2
                                                   P 2    t 2           P 3    t 3
                                          α 2 ∆T −     −     = α 3 ∆T +     +     .       (2.32)
                                                 bE 2 t 2  2r 2        bE 3 t 3  2r 3
                               Here, r 1 = r 2 = r 3 = r (very thin compared to length) and we derive the
                            curvature k =1/r by eliminating P 1 ,P 2 ,P 3 from (2.29) to (2.32). Note that
                            the deflection d at the free end of the MC from the curvature k is [2.30]
                                                              kl 2
                                                          d =                             (2.33)
                                                               2
                            for l   r.
                               Finally, the tip deflection of the MC by thermal strain due to the mismatch
                            between the thermal coefficient of the expansion is:
                                                              A
                                                          d =   ,                         (2.34)
                                                              B
                            where
                                     2
                            A =3∆Tl [E 1 E 2 t 1 t 2 (α 1 − α 2 )(t 1 + t 2 )+ E 2 E 3 t 2 t 3 (α 2 − α 3 )(t 2 + t 3 )
                                +E 1 E 3 t 1 t 3 (α 1 − α 3 )(t 1 +2t 2 + t 3 )]
                                                       2
                                                                       2
                                            2
                                                                                   2
                            B =2E 1 E 2 t 1 t 2 (2t +3t 1 t 2 +2t )+2E 2 E 3 t 2 t 3 (2t +3t 2 t 3 +2t )
                                                                       2
                                                       2
                                                                                   3
                                            1
                                                                                2 4
                                                                                      2 4
                                                                                            2 4
                                                  2
                                                       2
                                             2
                                +2E 1 E 3 t 1 t 3 (2t +6t +2t +6t 1 t 2 +6t 2 t 3 +3t 1 t 3 )+ E t +E t +E t .
                                                       3
                                                                                            3 3
                                                                                      2 2
                                                                                1 1
                                             1
                                                  2
   76   77   78   79   80   81   82   83   84   85   86