Page 196 - Multifunctional Photocatalytic Materials for Energy
P. 196
182 Multifunctional Photocatalytic Materials for Energy
[18] A. Kumar, A.R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO 2
nanowires on arbitrary substrates and their application in dye-sensitized solar cells,
J. Phys. Chem. C 114 (2010) 7787–7792.
[19] V. Zwilling, et al., Structure and physicochemistry of anodic oxide films on titanium and
TA6V alloy, Surf. Interface Anal. 27 (2015) 629–637.
[20] J.M. Macak, K. Sirotna, P. Schmuki, Self-organized porous titanium oxide prepared in
Na 2 SO 4 /NaF electrolytes, Electrochim. Acta 50 (2005) 3679–3684.
[21] J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO2
nanotubes, Angew. Chem. 44 (2005) 7463.
[22] J.M. Macák, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO 2 nanotubes by anodization
of titanium, Angew. Chem. 44 (2005) 2100.
[23] S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 μm long anodic TiO 2 nanotubes with
hexagonal self-ordering, Phys. Status Solidi RRL 1 (2007) R65–R67.
[24] J.M. Macak, S.P. Albu, P. Schmuki, Towards ideal hexagonal self-ordering of TiO 2 nano-
tubes, Phys. Status Solidi RRL 1 (2010) 181–183.
[25] L. Liu, et al., Fabrication of rutile TiO 2 tapered nanotubes with rectangular cross-sections
via anisotropic corrosion route, Chem. Commun. 46 (2010) 2402.
[26] W. Guo, et al., Rectangular bunched rutile TiO 2 nanorod arrays grown on carbon fiber for
dye-sensitized solar cells, J. Am. Chem. Soc. 134 (2012) 4437.
[27] D. Shao, et al., High responsivity, fast ultraviolet photodetector fabricated from ZnO
nanoparticle-graphene core-shell structures, Nanoscale 5 (2013) 3664–3667.
[28] L. Schmidt-Mende, J.L. Macmanus-Driscoll, ZnO – nanostructures, defects, and devices,
Mater. Today 10 (2007) 40–48.
[29] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv.
Mater. 10 (2009) 013001.
[30] L. Spanhel, Colloidal ZnO nanostructures and functional coatings: a survey, J. Sol-Gel
Sci. Technol. 39 (2006) 7–24.
[31] X. Ma, H. Zhang, Y. Ji, J. Xu, D. Yang, Sequential occurrence of ZnO nanopaticles,
nanorods, and nanotips during hydrothermal process in a dilute aqueous solution, Mater.
Lett. 59 (2005) 3393–3397.
[32] S. Shingubara, Fabrication of nanomaterials using porous alumina templates, J. Nanopart.
Res. 5 (2003) 17–30.
[33] R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado, Growth of pure ZnO thin films
prepared by chemical spray pyrolysis on silicon, J. Cryst. Growth 247 (2003) 497–504.
[34] J.H. Lee, I.C. Leu, Y.W. Chung, M.H. Hon, Fabrication of ordered ZnO hierarchi-
cal structures controlled via surface charge in the electrophoretic deposition process,
Nanotechnology 17 (2006) 4445.
[35] C.C. Tang, S.S. Fan, M.L.D.L. Chapelle, P. Li, Silica-assisted catalytic growth of oxide
and nitride nanowires, Chem. Phys. Lett. 333 (2001) 12–15.
[36] S.H. Dalal, et al., Controllable growth of vertically aligned zinc oxide nanowires using
vapour deposition, Nanotechnology 17 (2006) 4811.
[37] Y. Satoh, S. Ohshio, H. Saitoh, Photoluminescence spectroscopy of highly oriented
Y 2 O 3 :Tb crystalline whiskers, Sci. Technol. Adv. Mater. 6 (2008) 215–218.
[38] T. Yasuda, Y. Segawa, Zinc oxide thin films synthesized by metal organic chemical
reactions, Phys. Status Solidi 241 (2004) 676–679.
[39] A. Lagashetty, V. Havanoor, S. Basavaraja, S.D. Balaji, A. Venkataraman, Microwave-
assisted route for synthesis of nanosized metal oxides, Sci. Technol. Adv. Mater. 8 (2007)
484–493.
[40] Q. Yu, et al., Fabrication and optical properties of large-scale ZnO nanotube bundles via
a simple solution route, J. Phys. Chem. C 111 (2007) 17521–17526.