Page 196 - Multifunctional Photocatalytic Materials for Energy
P. 196

182                                Multifunctional Photocatalytic Materials for Energy

          [18]  A.  Kumar,  A.R.  Madaria, C.  Zhou, Growth of aligned single-crystalline rutile  TiO 2
             nanowires on arbitrary substrates and their application in dye-sensitized solar cells,
             J. Phys. Chem. C 114 (2010) 7787–7792.
          [19]  V. Zwilling, et al., Structure and physicochemistry of anodic oxide films on titanium and
             TA6V alloy, Surf. Interface Anal. 27 (2015) 629–637.
          [20]  J.M. Macak, K. Sirotna, P. Schmuki, Self-organized porous titanium oxide prepared in
             Na 2 SO 4 /NaF electrolytes, Electrochim. Acta 50 (2005) 3679–3684.
          [21]  J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO2
             nanotubes, Angew. Chem. 44 (2005) 7463.
          [22]  J.M. Macák, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO 2  nanotubes by anodization
             of titanium, Angew. Chem. 44 (2005) 2100.
          [23]  S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 μm long anodic TiO 2  nanotubes with
             hexagonal self-ordering, Phys. Status Solidi RRL 1 (2007) R65–R67.
          [24]  J.M. Macak, S.P. Albu, P. Schmuki, Towards ideal hexagonal self-ordering of TiO 2  nano-
             tubes, Phys. Status Solidi RRL 1 (2010) 181–183.
          [25]  L. Liu, et al., Fabrication of rutile TiO 2  tapered nanotubes with rectangular cross-sections
             via anisotropic corrosion route, Chem. Commun. 46 (2010) 2402.
          [26]  W. Guo, et al., Rectangular bunched rutile TiO 2  nanorod arrays grown on carbon fiber for
             dye-sensitized solar cells, J. Am. Chem. Soc. 134 (2012) 4437.
          [27]  D.  Shao, et  al.,  High responsivity, fast ultraviolet photodetector fabricated from  ZnO
             nanoparticle-graphene core-shell structures, Nanoscale 5 (2013) 3664–3667.
          [28]  L. Schmidt-Mende, J.L. Macmanus-Driscoll, ZnO – nanostructures, defects, and devices,
             Mater. Today 10 (2007) 40–48.
          [29]  S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv.
             Mater. 10 (2009) 013001.
          [30]  L. Spanhel, Colloidal ZnO nanostructures and functional coatings: a survey, J. Sol-Gel
             Sci. Technol. 39 (2006) 7–24.
          [31]  X. Ma, H. Zhang, Y. Ji, J. Xu, D. Yang, Sequential occurrence of ZnO nanopaticles,
             nanorods, and nanotips during hydrothermal process in a dilute aqueous solution, Mater.
             Lett. 59 (2005) 3393–3397.
          [32]  S. Shingubara, Fabrication of nanomaterials using porous alumina templates, J. Nanopart.
             Res. 5 (2003) 17–30.
          [33]  R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado, Growth of pure ZnO thin films
             prepared by chemical spray pyrolysis on silicon, J. Cryst. Growth 247 (2003) 497–504.
          [34]  J.H.  Lee,  I.C.  Leu, Y.W.  Chung, M.H.  Hon, Fabrication  of  ordered  ZnO hierarchi-
             cal structures controlled via surface charge in the electrophoretic deposition process,
             Nanotechnology 17 (2006) 4445.
          [35]  C.C. Tang, S.S. Fan, M.L.D.L. Chapelle, P. Li, Silica-assisted catalytic growth of oxide
             and nitride nanowires, Chem. Phys. Lett. 333 (2001) 12–15.
          [36]  S.H. Dalal, et al., Controllable growth of vertically aligned zinc oxide nanowires using
             vapour deposition, Nanotechnology 17 (2006) 4811.
          [37]  Y.  Satoh, S.  Ohshio, H.  Saitoh, Photoluminescence spectroscopy of highly oriented
             Y 2 O 3 :Tb crystalline whiskers, Sci. Technol. Adv. Mater. 6 (2008) 215–218.
          [38]  T.  Yasuda, Y.  Segawa, Zinc oxide thin films synthesized by metal organic chemical
               reactions, Phys. Status Solidi 241 (2004) 676–679.
          [39]  A. Lagashetty, V. Havanoor, S. Basavaraja, S.D. Balaji, A. Venkataraman, Microwave-
             assisted route for synthesis of nanosized metal oxides, Sci. Technol. Adv. Mater. 8 (2007)
             484–493.
          [40]  Q. Yu, et al., Fabrication and optical properties of large-scale ZnO nanotube bundles via
             a simple solution route, J. Phys. Chem. C 111 (2007) 17521–17526.
   191   192   193   194   195   196   197   198   199   200   201