Page 197 - Multifunctional Photocatalytic Materials for Energy
P. 197

Metal-based semiconductor nanomaterials for thin-film solar cells   183

            [41]  A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized
                solar cells, Nano Lett. 7 (2007) 2183.
            [42]  G.S. Han, et al., Epitaxial anatase TiO 2  nanorods array with reduced interfacial charge
                recombination for solar water splitting, J. Electrochem. Soc. 163 (2016) H469–H473.
            [43]  H.S. Chung, et al., Direct low-temperature growth of single-crystalline anatase TiO 2  na-
                norod arrays on transparent conducting oxide substrates for use in PbS quantum-dot solar
                cells, ACS Appl. Mater. Interfaces 7 (2015) 10324–10330.
            [44]  S. Lee, et al., Crystallographically preferred oriented TiO 2  nanotube arrays for efficient
                photovoltaic energy conversion, Energy Environ. Sci. 5 (2012) 7989–7995.
            [45]  B.J. Kim, et al., Highly efficient and bending durable perovskite solar cells: toward a
                wearable power source, Energy Environ. Sci. 8 (2015) 916–921.
            [46]  G.S. Han, H.W. Shim, S. Lee, M.L. Duff, J.K. Lee, Low-temperature modification of ZnO
                nanoparticles film for electron-transport layers in perovskite solar cells, ChemSusChem
                10 (11) (2017) 2425–2430.
            [47]  S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb 2 S 3  on
                nanocrystalline TiO 2  for CH 3 NH 3 PbI 3  perovskite solar cells, J. Phys. Chem. C 118 (2014)
                16995–17000.
            [48]  S. Kundu, et al., Device stability of inverted and conventional bulk heterojunction solar
                cells with MoO 3  and ZnO nanoparticles as charge transport layers, Org. Electron. 14
                (2013) 3083–3088.
            [49]  D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, 11% efficient perovskite solar cell based
                on ZnO nanorods: an effective charge collection system, J. Phys. Chem. C 118 (2014)
                16567–16573.
            [50]  D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared
                using room-temperature solution processing techniques, Nat. Photonics 8 (2014) 133–138.
            [51]  X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, The effect of ALD-Zno layers on the formation
                of CH 3 NH 3 PbI 3  with different perovskite precursors and sintering temperatures, Chem.
                Commun. 50 (2014) 14405–14408.
            [52]  Y. Li, et al., Mesoporous SnO 2  nanoparticle films as electron-transporting material in
                perovskite solar cells, RSC Adv. 5 (2015) 28424–28429.
            [53]  Q.  Dong, et  al., Insight into perovskite solar cells based on SnO2 compact electron-
                selective layer, J. Phys. Chem. C 119 (2015) 10212–10217.
            [54]  J. Song, et al., Low-temperature SnO2-based electron selective contact for efficient and
                stable perovskite solar cells, J. Mater. Chem. A 3 (2015) 10837–10844.
            [55]  W. Ke, et al., Low-temperature solution-processed tin oxide as an alternative electron
                transporting  layer  for  efficient  perovskite  solar  cells,  J. Am.  Chem.  Soc.  137  (2015)
                6730–6733.
            [56]  J.P.C. Baena, et al., Highly efficient planar perovskite solar cells through band alignment
                engineering, Energy Environ. Sci. 8 (2015) 2928–2934.
            [57]  S.S. Shin, et al., Colloidally prepared La-doped BaSnO 3  electrodes for efficient, photo-
                stable perovskite solar cells, Science 356 (2017) 167.
            [58]  P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO 2  nanotubes and their application in
                dye-sensitized solar cells, Nanoscale 2 (2010) 45–59.
            [59]  A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells.
                Chem. Rev. 110 (2010) 6595, https://doi.org/10.1021/cr900356p.
            [60]  P.M. Sommeling, et al., Influence of a TiCl 4  post-treatment on nanocrystalline TiO 2  films
                in dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 19191–19197.
            [61]  N. Kopidakis, E.A. Schiff, N.G. Park, J.V.D. Lagemaat, A.J. Frank, Ambipolar diffu-
                sion of photocarriers in electrolyte-filled, nanoporous TiO 2 , J. Phys. Chem. B 104 (2000)
                3930–3936.
   192   193   194   195   196   197   198   199   200   201   202