Page 197 - Multifunctional Photocatalytic Materials for Energy
P. 197
Metal-based semiconductor nanomaterials for thin-film solar cells 183
[41] A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized
solar cells, Nano Lett. 7 (2007) 2183.
[42] G.S. Han, et al., Epitaxial anatase TiO 2 nanorods array with reduced interfacial charge
recombination for solar water splitting, J. Electrochem. Soc. 163 (2016) H469–H473.
[43] H.S. Chung, et al., Direct low-temperature growth of single-crystalline anatase TiO 2 na-
norod arrays on transparent conducting oxide substrates for use in PbS quantum-dot solar
cells, ACS Appl. Mater. Interfaces 7 (2015) 10324–10330.
[44] S. Lee, et al., Crystallographically preferred oriented TiO 2 nanotube arrays for efficient
photovoltaic energy conversion, Energy Environ. Sci. 5 (2012) 7989–7995.
[45] B.J. Kim, et al., Highly efficient and bending durable perovskite solar cells: toward a
wearable power source, Energy Environ. Sci. 8 (2015) 916–921.
[46] G.S. Han, H.W. Shim, S. Lee, M.L. Duff, J.K. Lee, Low-temperature modification of ZnO
nanoparticles film for electron-transport layers in perovskite solar cells, ChemSusChem
10 (11) (2017) 2425–2430.
[47] S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb 2 S 3 on
nanocrystalline TiO 2 for CH 3 NH 3 PbI 3 perovskite solar cells, J. Phys. Chem. C 118 (2014)
16995–17000.
[48] S. Kundu, et al., Device stability of inverted and conventional bulk heterojunction solar
cells with MoO 3 and ZnO nanoparticles as charge transport layers, Org. Electron. 14
(2013) 3083–3088.
[49] D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, 11% efficient perovskite solar cell based
on ZnO nanorods: an effective charge collection system, J. Phys. Chem. C 118 (2014)
16567–16573.
[50] D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared
using room-temperature solution processing techniques, Nat. Photonics 8 (2014) 133–138.
[51] X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, The effect of ALD-Zno layers on the formation
of CH 3 NH 3 PbI 3 with different perovskite precursors and sintering temperatures, Chem.
Commun. 50 (2014) 14405–14408.
[52] Y. Li, et al., Mesoporous SnO 2 nanoparticle films as electron-transporting material in
perovskite solar cells, RSC Adv. 5 (2015) 28424–28429.
[53] Q. Dong, et al., Insight into perovskite solar cells based on SnO2 compact electron-
selective layer, J. Phys. Chem. C 119 (2015) 10212–10217.
[54] J. Song, et al., Low-temperature SnO2-based electron selective contact for efficient and
stable perovskite solar cells, J. Mater. Chem. A 3 (2015) 10837–10844.
[55] W. Ke, et al., Low-temperature solution-processed tin oxide as an alternative electron
transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc. 137 (2015)
6730–6733.
[56] J.P.C. Baena, et al., Highly efficient planar perovskite solar cells through band alignment
engineering, Energy Environ. Sci. 8 (2015) 2928–2934.
[57] S.S. Shin, et al., Colloidally prepared La-doped BaSnO 3 electrodes for efficient, photo-
stable perovskite solar cells, Science 356 (2017) 167.
[58] P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO 2 nanotubes and their application in
dye-sensitized solar cells, Nanoscale 2 (2010) 45–59.
[59] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells.
Chem. Rev. 110 (2010) 6595, https://doi.org/10.1021/cr900356p.
[60] P.M. Sommeling, et al., Influence of a TiCl 4 post-treatment on nanocrystalline TiO 2 films
in dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 19191–19197.
[61] N. Kopidakis, E.A. Schiff, N.G. Park, J.V.D. Lagemaat, A.J. Frank, Ambipolar diffu-
sion of photocarriers in electrolyte-filled, nanoporous TiO 2 , J. Phys. Chem. B 104 (2000)
3930–3936.