Page 198 - Multifunctional Photocatalytic Materials for Energy
P. 198
184 Multifunctional Photocatalytic Materials for Energy
[62] J. Nelson, Continuous-time random-walk model of electron transport in nanocrystalline
TiO 2 electrodes, Phys. Rev. B 59 (1999) 15374.
[63] J. Bisquert, Fractional diffusion in the multiple-trapping regime and revision of the equiv-
alence with the continuous-time random walk, Phys. Rev. Lett. 91 (2003) 010602.
[64] S. Nakade, et al., Influence of TiO 2 nanoparticle size on electron diffusion and recombi-
nation in dye-sensitized TiO 2 solar cells, J. Phys. Chem. B 107 (2003) 8607–8611.
[65] L. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C
111 (2007) 6601–6612.
[66] J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells
based on oriented TiO 2 nanotube arrays: transport, trapping, and transfer of electrons,
J. Am. Chem. Soc. 130 (2008) 13364–13372.
[67] D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, Bamboo-type TiO 2 nanotubes: improved conver-
sion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc. 130 (2008) 16454–16455.
[68] D. Kim, A. Ghicov, P. Schmuki, TiO 2 nanotube arrays: elimination of disordered top lay-
ers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells,
Electrochem. Commun. 10 (2008) 1835–1838.
[69] A. Ghicov, et al., TiO 2 nanotubes in dye-sensitized solar cells: critical factors for the con-
version efficiency, Chem. Asian J. 4 (2009) 520–525.
[70] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies
and light scattering in dye-sensitized solar cells using oriented TiO 2 nanotubes arrays,
Nano Lett. 7 (2007) 69–74.
[71] D. Kuang, et al., Application of highly ordered TiO 2 nanotube arrays in flexible dye-
sensitized solar cells, ACS Nano 2 (2008) 1113–1116.
[72] S.H. Kang, et al., Nanorod-based dye-sensitized solar cells with improved charge collec-
tion efficiency, Adv. Mater. 20 (2008) 54–58.
[73] M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Electrospun TiO 2 electrodes for
dye-sensitized solar cells, Nanotechnology 15 (2004) 1861.
[74] S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Synthesis and dye-
sensitized solar cell performance of nanorods/nanoparticles TiO 2 from high surface area
nanosheet TiO 2 , J. Nanosci. Nanotechnol. 6 (2006) 3685–3692.
[75] Y. Ohsaki, et al., Dye-sensitized TiO 2 nanotube solar cells: fabrication and electronic
characterization, Phys. Chem. Chem. Phys. 7 (2005) 4157–4163.
[76] M. Adachi, et al., Highly efficient dye-sensitized solar cells with a titania thin-film elec-
trode composed of a network structure of single-crystal-like TiO 2 nanowires made by the
“oriented attachment” mechanism, J. Am. Chem. Soc. 126 (2004) 14943–14949.
[77] K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from ori-
ented TiO 2 nanotube arrays: reducing the dimensionality of transport and recombination
in dye-sensitized solar cells, Nano Lett. 7 (2007) 3739–3746.
[78] J.M. Macák, H. Tsuchiya, A. Ghicov, P. Schmuki, Dye-sensitized anodic TiO 2 nanotubes,
Electrochem. Commun. 7 (2005) 1133–1137.
[79] K. Shankar, et al., Highly-ordered TiO 2 nanotube arrays up to 220 μm in length: use in water
photoelectrolysis and dye-sensitized solar cells, Nanotechnology 18 (2007) 065707.
[80] S. So, A. Kriesch, U. Peschel, P. Schmuki, Conical-shaped titania nanotubes for opti-
mized light management in DSSCs reach back-side illumination efficiencies >8%,
J. Mater. Chem. A 3 (2015) 12603–12608.
[81] M. Ye, X. Xin, C. Lin, Z. Lin, High efficiency dye-sensitized solar cells based on hierar-
chically structured nanotubes, Nano Lett. 11 (2011) 3214–3220.
[82] B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent
conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131 (2009) 3985–3990.