Page 198 - Multifunctional Photocatalytic Materials for Energy
P. 198

184                                Multifunctional Photocatalytic Materials for Energy

          [62]  J. Nelson, Continuous-time random-walk model of electron transport in nanocrystalline
             TiO 2  electrodes, Phys. Rev. B 59 (1999) 15374.
          [63]  J. Bisquert, Fractional diffusion in the multiple-trapping regime and revision of the equiv-
             alence with the continuous-time random walk, Phys. Rev. Lett. 91 (2003) 010602.
          [64]  S. Nakade, et al., Influence of TiO 2  nanoparticle size on electron diffusion and recombi-
             nation in dye-sensitized TiO 2  solar cells, J. Phys. Chem. B 107 (2003) 8607–8611.
          [65]  L. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C
             111 (2007) 6601–6612.
          [66]  J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells
             based on oriented TiO 2  nanotube arrays: transport, trapping, and transfer of electrons,
             J. Am. Chem. Soc. 130 (2008) 13364–13372.
          [67]  D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, Bamboo-type TiO 2  nanotubes: improved conver-
             sion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc. 130 (2008) 16454–16455.
          [68]  D. Kim, A. Ghicov, P. Schmuki, TiO 2  nanotube arrays: elimination of disordered top lay-
             ers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells,
             Electrochem. Commun. 10 (2008) 1835–1838.
          [69]  A. Ghicov, et al., TiO 2  nanotubes in dye-sensitized solar cells: critical factors for the con-
             version efficiency, Chem. Asian J. 4 (2009) 520–525.
          [70]  K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies
             and light scattering in dye-sensitized solar cells using oriented TiO 2  nanotubes arrays,
             Nano Lett. 7 (2007) 69–74.
          [71]  D. Kuang, et al., Application of highly ordered TiO 2  nanotube arrays in flexible dye-
             sensitized solar cells, ACS Nano 2 (2008) 1113–1116.
          [72]  S.H. Kang, et al., Nanorod-based dye-sensitized solar cells with improved charge collec-
             tion efficiency, Adv. Mater. 20 (2008) 54–58.
          [73]  M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Electrospun TiO 2  electrodes for
             dye-sensitized solar cells, Nanotechnology 15 (2004) 1861.
          [74]  S.  Pavasupree,  S.  Ngamsinlapasathian, Y.  Suzuki,  S.  Yoshikawa,  Synthesis  and  dye-
             sensitized solar cell performance of nanorods/nanoparticles TiO 2  from high surface area
             nanosheet TiO 2 , J. Nanosci. Nanotechnol. 6 (2006) 3685–3692.
          [75]  Y. Ohsaki, et al., Dye-sensitized TiO 2  nanotube solar cells: fabrication and electronic
             characterization, Phys. Chem. Chem. Phys. 7 (2005) 4157–4163.
          [76]  M. Adachi, et al., Highly efficient dye-sensitized solar cells with a titania thin-film elec-
             trode composed of a network structure of single-crystal-like TiO 2  nanowires made by the
             “oriented attachment” mechanism, J. Am. Chem. Soc. 126 (2004) 14943–14949.
          [77]  K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from ori-
             ented TiO 2  nanotube arrays: reducing the dimensionality of transport and recombination
             in dye-sensitized solar cells, Nano Lett. 7 (2007) 3739–3746.
          [78]  J.M. Macák, H. Tsuchiya, A. Ghicov, P. Schmuki, Dye-sensitized anodic TiO 2  nanotubes,
             Electrochem. Commun. 7 (2005) 1133–1137.
          [79]  K. Shankar, et al., Highly-ordered TiO 2  nanotube arrays up to 220 μm in length: use in water
             photoelectrolysis and dye-sensitized solar cells, Nanotechnology 18 (2007) 065707.
          [80]  S. So, A. Kriesch, U. Peschel, P. Schmuki, Conical-shaped titania nanotubes for opti-
             mized light management in DSSCs reach back-side illumination efficiencies  >8%,
             J. Mater. Chem. A 3 (2015) 12603–12608.
          [81]  M. Ye, X. Xin, C. Lin, Z. Lin, High efficiency dye-sensitized solar cells based on hierar-
             chically structured nanotubes, Nano Lett. 11 (2011) 3214–3220.
          [82]  B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO 2  nanorods on transparent
             conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131 (2009) 3985–3990.
   193   194   195   196   197   198   199   200   201   202   203