Page 251 - Multifunctional Photocatalytic Materials for Energy
P. 251

234                                Multifunctional Photocatalytic Materials for Energy

          [12]  F. Fresno, R. Portela, S. Suarez, J.M. Coronado, Photocatalytic materials: recent achieve-
             ments and near future trends, J. Mater. Chem. A 2 (2014) 2863–2884.
          [13]  M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of
             semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
          [14]  C.M. Donegá, Synthesis and properties of colloidal heteronanocrystals, Chem. Soc. Rev.
             40 (2011) 1512–1546.
          [15]  H. Wang, J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO 2,
             J. Phys. Condens. Matter 18 (2006) 421.
          [16]  N. Serpone, A.V. Emeline, Semiconductor photocatalysis—past, present, and future out-
             look, J. Phys. Chem. Lett. 3 (2012) 673–677.
          [17]  Y.-W. Su, W.-H. Lin, Y.-J. Hsu, K.-H. Wei, Conjugated polymer/nanocrystal nanocom-
             posites for renewable energy applications in photovoltaics and photocatalysis, Small
             10 (2014) 4427–4442.
          [18]  A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor elec-
             trode, Nature 238 (1972) 37–38.
          [19]  H. Kazuhito, I. Hiroshi, F. Akira, TiO 2 photocatalysis: a historical overview and future
             prospects, Jpn. J. Appl. Phys. 44 (2005) 8269.
          [20]  Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal- dichalcogenide-nanosheet-
             based composites for photocatalytic and electrocatalytic hydrogen evolution reactions,
             Adv. Mater. 28 (2016) 1917–1933.
          [21]  J.  Ran, J.  Zhang, J.  Yu, M.  Jaroniec, S.Z.  Qiao, Earth-abundant cocatalysts for
               semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787–7812.
          [22]  K. He, M. Li, L. Guo, Preparation and photocatalytic activity of PANI-CdS composites
             for hydrogen evolution, Int. J. Hydrog. Energy 37 (2012) 755–759.
          [23]  H.-J.  Hou, X.-H.  Zhang, D.-K.  Huang, X.  Ding, S.-Y.  Wang, X.-L.  Yang, S.-Q.  Li,
             Y.G. Xiang, H. Chen, Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunc-
             tion for visible-light-driven H2 production and pollutant removal, Appl. Catal. B Environ.
             203 (2017) 563–571.
          [24]  C. Shifu, Z. Sujuan, L. Wei, Z. Wei, Preparation and activity evaluation of p–n junction
             photocatalyst NiO/TiO2, J. Hazard. Mater. 155 (2008) 320–326.
          [25]  K. Ladomenou, M. Natali, E. Iengo, G. Charalampidis, F. Scandola, A.G. Coutsolelos,
             Photochemical hydrogen generation with porphyrin-based systems, Coord. Chem. Rev.
             304–305 (2015) 38–54.
          [26]  C.J.  Medforth, Z.  Wang, K.E.  Martin,  Y.  Song, J.L.  Jacobsen, J.A.  Shelnutt, Self-
             assembled porphyrin nanostructures, Chem. Commun. (2009) 7261–7277.
          [27]  A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent,
             M.J.  Rosseinsky, A water-stable porphyrin-based metal–organic framework active for
             visible-light photocatalysis, Angew. Chem. Int. Ed. 51 (2012) 7440–7444.
          [28]  B.P. Vinayan, N. Rupali, R. Sundara, Investigation of oxygen reduction and methanol
             oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nano-
             carbon supports, Mater. Res. Exp. 3 (2016) 095017.
          [29]  B.P.  Vinayan, R.I.  Jafri, R.  Nagar, N.  Rajalakshmi, K.  Sethupathi, S.  Ramaprabhu,
             Catalytic activity of platinum–cobalt alloy nanoparticles decorated functionalized mul-
             tiwalled  carbon  nanotubes  for  oxygen  reduction  reaction  in  PEMFC,  Int.  J.  Hydrog.
             Energy 37 (2012) 412–421.
          [30]  B.P. Vinayan, R. Nagar, S. Ramaprabhu, Synthesis and investigation of mechanism of
             platinum-graphene electrocatalysts by novel co-reduction techniques for proton exchange
             membrane fuel cell applications, J. Mater. Chem. 22 (2012) 25325–25334.
   246   247   248   249   250   251   252   253   254   255   256