Page 251 - Multifunctional Photocatalytic Materials for Energy
P. 251
234 Multifunctional Photocatalytic Materials for Energy
[12] F. Fresno, R. Portela, S. Suarez, J.M. Coronado, Photocatalytic materials: recent achieve-
ments and near future trends, J. Mater. Chem. A 2 (2014) 2863–2884.
[13] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of
semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
[14] C.M. Donegá, Synthesis and properties of colloidal heteronanocrystals, Chem. Soc. Rev.
40 (2011) 1512–1546.
[15] H. Wang, J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO 2,
J. Phys. Condens. Matter 18 (2006) 421.
[16] N. Serpone, A.V. Emeline, Semiconductor photocatalysis—past, present, and future out-
look, J. Phys. Chem. Lett. 3 (2012) 673–677.
[17] Y.-W. Su, W.-H. Lin, Y.-J. Hsu, K.-H. Wei, Conjugated polymer/nanocrystal nanocom-
posites for renewable energy applications in photovoltaics and photocatalysis, Small
10 (2014) 4427–4442.
[18] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor elec-
trode, Nature 238 (1972) 37–38.
[19] H. Kazuhito, I. Hiroshi, F. Akira, TiO 2 photocatalysis: a historical overview and future
prospects, Jpn. J. Appl. Phys. 44 (2005) 8269.
[20] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal- dichalcogenide-nanosheet-
based composites for photocatalytic and electrocatalytic hydrogen evolution reactions,
Adv. Mater. 28 (2016) 1917–1933.
[21] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for
semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787–7812.
[22] K. He, M. Li, L. Guo, Preparation and photocatalytic activity of PANI-CdS composites
for hydrogen evolution, Int. J. Hydrog. Energy 37 (2012) 755–759.
[23] H.-J. Hou, X.-H. Zhang, D.-K. Huang, X. Ding, S.-Y. Wang, X.-L. Yang, S.-Q. Li,
Y.G. Xiang, H. Chen, Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunc-
tion for visible-light-driven H2 production and pollutant removal, Appl. Catal. B Environ.
203 (2017) 563–571.
[24] C. Shifu, Z. Sujuan, L. Wei, Z. Wei, Preparation and activity evaluation of p–n junction
photocatalyst NiO/TiO2, J. Hazard. Mater. 155 (2008) 320–326.
[25] K. Ladomenou, M. Natali, E. Iengo, G. Charalampidis, F. Scandola, A.G. Coutsolelos,
Photochemical hydrogen generation with porphyrin-based systems, Coord. Chem. Rev.
304–305 (2015) 38–54.
[26] C.J. Medforth, Z. Wang, K.E. Martin, Y. Song, J.L. Jacobsen, J.A. Shelnutt, Self-
assembled porphyrin nanostructures, Chem. Commun. (2009) 7261–7277.
[27] A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent,
M.J. Rosseinsky, A water-stable porphyrin-based metal–organic framework active for
visible-light photocatalysis, Angew. Chem. Int. Ed. 51 (2012) 7440–7444.
[28] B.P. Vinayan, N. Rupali, R. Sundara, Investigation of oxygen reduction and methanol
oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nano-
carbon supports, Mater. Res. Exp. 3 (2016) 095017.
[29] B.P. Vinayan, R.I. Jafri, R. Nagar, N. Rajalakshmi, K. Sethupathi, S. Ramaprabhu,
Catalytic activity of platinum–cobalt alloy nanoparticles decorated functionalized mul-
tiwalled carbon nanotubes for oxygen reduction reaction in PEMFC, Int. J. Hydrog.
Energy 37 (2012) 412–421.
[30] B.P. Vinayan, R. Nagar, S. Ramaprabhu, Synthesis and investigation of mechanism of
platinum-graphene electrocatalysts by novel co-reduction techniques for proton exchange
membrane fuel cell applications, J. Mater. Chem. 22 (2012) 25325–25334.