Page 182 - Numerical Analysis Using MATLAB and Excel
P. 182

Using the Method of Variation of Parameters for the Forced Response


               the roots s =  – 1  and s =  – 3 . Therefore, the natural response is
                                      2
                          1
                                                            t –
                                                  y N  =  k e +  k e – 3t                              (5.72)
                                                                2
                                                         1
               a. Using the method of undetermined coefficients we let y =  k 3  (a constant). Then, by substitu-
                                                                       F
                  tion into (5.71) we obtain k =  4  and thus the total solution is
                                             3
                                                                t –   – 3t
                                           yt() =  y +  y =  k e +  k e  + 4                           (5.73)
                                                        F
                                                             1
                                                   N
                                                                    2
               b. With the method of variation of parameters we begin with the natural response found above as
                  (5.72) and we let the solutions y 1  and y 2  be represented as
                                                       t –
                                                 y =  e   and  y =  e – 3t                             (5.74)
                                                  1
                                                               2
                  Then by (5.68), the total solution is
                                                       y =  u y + u y
                                                                   2 2
                                                            1 1
                  or
                                                            t –
                                                    y =  u e +  u e – 3t                               (5.75)
                                                         1
                                                                2
                  Also, from (5.69),
                                                     du      du
                                                               2
                                                        1
                                                     --------y +  --------y =  0
                                                      dt  1   dt  2
                  or
                                                  du 1 – t  du 2 – 3t
                                                   --------e +  --------e  =  0                        (5.76)
                                                   dt      dt
                  and from (5.70),
                                                  du  dy    du   dy
                                                                   2
                                                              2
                                                        1
                                                    1
                                                     ⋅
                                                               ⋅
                                                  -------- -------- +  -------- -------- =  ft()
                                                  dt   dt   dt   dt
                  or
                                              du         du
                                               -------- –(  1  e )  t –  -------- –( +  2  3e – 3t )  =  12  (5.77)
                                               dt         dt
                  Next, we find du dt⁄   and du ⁄  dt  by Cramer’s rule as follows:
                                              2
                                  1
                                                 – 3t
                                          0     e
                                du      12      – 3e – 3t    – 12e – 3t  – 12e – 3t   t
                                  1
                                -------- =  ------------------------------------------- =  -------------------------------- =  ------------------ =  6e  (5.78)
                                 dt      e  t –  e – 3t   – 3e – 4t  +  e – 4t  – 2e – 4t
                                        e –  t –  – 3e – 3t
                  and



               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−21

               Copyright © Orchard Publications
   177   178   179   180   181   182   183   184   185   186   187