Page 183 - Numerical Analysis Using MATLAB and Excel
P. 183

Chapter 5  Differential Equations, State Variables, and State Equations



                                                 e  t –  0
                                         du      e –  t –  12   12e  t –    3t
                                           2
                                         -------- =  --------------------------------- =  --------------- =  – 6e  (5.79)
                                          dt       – 2e – 4t   – 2e – 4t
                   Now, integration of (5.78) and (5.79) and substitution into (5.75) yields

                                                                      3t
                                       ∫
                                                 t
                                                                    ∫
                                         t
                                                                                3t
                                 u =  6e t =   6e +  k 1    u =  – 6 e d =  – 2e +  k 2                (5.80)
                                          d
                                                                        t
                                  1
                                                             2
                                                                         3t
                                            t –
                                                                  t –
                                                          t
                                   y =  u e +  u e – 3t  =  (  6e +  k )  1  e +  – (  2e +  k )  2  e – 3t
                                                2
                                         1
                                                                                                       (5.81)
                                               t –
                                                                 t –
                                     =  6 +  k e –  2 + k e – 3t  =  k e +  k e – 3t  +  4
                                            1
                                                                     2
                                                              1
                                                      2
                   We observe that the last expression in (5.81) is the same as (5.73) of part (a).
                  Check with MATLAB:
                  y=dsolve('D2y+4*Dy+3*y=12')
                  y =
                    (4*exp(t)+C1*exp(-3*t)*exp(t)+C2)/exp(t)
               Example 5.13
               Find the total solution of
                                                    2
                                                   d y   4y =  tan 2t                                  (5.82)
                                                   -------- +
                                                   dt 2
               in terms of the constants k 1  and k 2  by any method.
               Solution:

               This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use
               the method of variation of parameters.


                                              2
               The characteristic equation is s +  4 =  0  from which s =  ± j2  and thus the natural response is
                                                  y N  =  k e j2t  +  k e  j – 2t                      (5.83)
                                                                2
                                                        1
               We let
                                              y =  cos 2t  and  y =  sin 2t                            (5.84)
                                                                2
                                                1
               Then, by (5.68) the solution is
                                         y =  u y +  u y   =  u cos 2t +  u sin 2t                     (5.85)
                                                     2 2
                                                             1
                                               1 1
                                                                       2
               5−22                             Numerical Analysis Using MATLAB® and Excel®, Third Edition

                                                                             Copyright © Orchard Publications
   178   179   180   181   182   183   184   185   186   187   188