Page 184 - Numerical Analysis Using MATLAB and Excel
P. 184

Using the Method of Variation of Parameters for the Forced Response

               Also, from (5.69),

                                                      du     du
                                                               2
                                                        1
                                                      --------y +  --------y =  0
                                                      dt  1  dt  2
               or
                                                du         du
                                                   1
                                                              2
                                                 -------- cos 2t +  -------- sin 2t =  0               (5.86)
                                                 dt         dt
               and from (5.70),
                             du   dy   du   dy          du            du
                                    1
                               1
                                         2
                                              2
                                                          1
                                                           (
                                ⋅
                                                                                 )
                                           ⋅
                                                                   )
                             -------- -------- +  -------- -------- =  ft() =  -------- – 2sin 2t +  -------- 2cos(  2  2t =  tan 2t  (5.87)
                             dt   dt    dt   dt         dt             dt
               Next, we find du dt⁄   and du ⁄  dt  by Cramer’s rule as follows:
                                           2
                               1
                                          0     sin 2t             sin 2 2t
                               du      tan 2t    2cos 2t          – ---------------  – sin 2 2t
                                                                   cos
                                                                      2t
                                 1
                               -------- =  ------------------------------------------------------ =  -------------------------------------------- =  ------------------  (5.88)
                               dt       cos 2t    sin 2t     2cos 2 2t +  2sin 2 2t  2cos 2t
                                      – 2sin 2t    2cos 2t
               and
                                                     cos 2t    0
                                          du      – 2sin 2t   tan 2t   sin 2t
                                             2
                                          -------- =  -------------------------------------------------- =  ------------  (5.89)
                                           dt             2              2
               Now, integration of (5.88) and (5.89) and substitution into (5.85) yields
                                               2
                                         1 sin  2t     sin 2t  1
                                           ∫
                                                              -
                                                                              )
                                          -
                                   u =  – -- --------------- td =  ------------ –  -- ln (  sec 2t +  tan 2t +  k 1  (5.90)
                                    1
                                               2t
                                                              4
                                         2 cos
                                                         4
                                                  1             cos 2t
                                                   ∫
                                                  -
                                                         d
                                             u =  -- sin 2t t =  –  ------------- +  k 2               (5.91)
                                              2
                                                  2
                                                                  4
                                    sin
                                       2tcos
                                            2t
                                                                      )
                                                                                  --------------------------- +
                                                --- cos
                 y =  u y +  u y   =  --------------------------- –  1  2t (  ln  sec 2t +  tan 2t + k cos 2t –  sin 2tcos 2t  k sin 2t
                                                                          1
                      1 1
                                                                                                2
                             2 2
                                                4
                                        4
                                                                                       4
                                                                                                       (5.92)
                       1
                       -
                                             )
                     –  -- cos 2t (=  ln  sec 2t +  tan 2t +  k cos 2t +  k sin 2t
                       4                         1         2
               Check with MATLAB:
               y=dsolve('D2y+4*y=tan(2*t)')
               y =
               -1/4*cos(2*t)*log((1+sin(2*t))/cos(2*t))+C1*cos(2*t)+C2*sin(2*t)
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−23
               Copyright © Orchard Publications
   179   180   181   182   183   184   185   186   187   188   189