Page 214 - Numerical Analysis Using MATLAB and Excel
P. 214

Solutions to End−of−Chapter Exercises


                                      y =  u y +  u y   =  (  ln  cos t +  k )  1  cos t +  (  t +  k )  2  sin t
                                            1 1
                                                  2 2
                                                                      (
                                        =  k cos + k sin + tsin +  cos t ln  cos  t )
                                                               t
                                                t
                                                        t
                                            1
                                                    2
                   Check with MATLAB:
                   y=dsolve('D2y+y=sec(t)'); f=simple(y)
                   f =
                   sin(t)*t+log(cos(t))*cos(t)+C1*sin(t)+C2*cos(t)
               5. Differentiating the given integro−differential equation with respect to   we obtain
                                                                                      t

                                          2
                                        dv
                                                dv
                                dv 3  k -------- +  k ------ + k v =  3cos 3t –  3sin 3t =  3 cos 3t –  sin 3t )
                                                                              (
                                -------- +
                                 dt 3  3  dt 2  2  dt  1
                   or
                                                    2
                                                 dv
                                                        dv
                                        dv 3  – k -------- k ------ k v +  3 cos 3t –  sin 3t )    (1)
                                                                  (
                                                          –
                                        -------- =
                                                     –
                                        dt 3    3  dt 2  2  dt  1
                  We let
                                                    ------ =
                                        v =  x 1    dv   x =   x · 1  dv 2 2  x =  x · 2
                                                                      -------- =
                                                           2
                                                                              3
                                                    dt
                                                                       dt
                   Then,
                                                          dv 3   ·
                                                          -------- =  x 3
                                                          dt 3
                  and by substitution into (1)
                                          ·
                                                                     (
                                         x =   –  k x –  k x –  k x +  3 cos 3t –  sin 3t )
                                                              3 3
                                                        2 2
                                           3
                                                  1 1
                   Thus, the state equations are
                                          ·
                                         x =   x 2
                                           1
                                          ·
                                         x =   x 3
                                           2
                                          ·
                                                                     (
                                         x =   –  k x –  k x –  k x +  3 cos 3t –  sin 3t )
                                                  1 1
                                                              3 3
                                                        2 2
                                           3
                   and in matrix form
                                        ·
                                       x 1     0    1   0    x 1   0
                                        ·
                                                                        (
                                       x 2  =  0    0   1  ⋅  x 2  +  0  ⋅  3 cos 3t –  sin 3t )
                                        ·     – k – k – k    x     1
                                       x 3       1   2   3    3
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−53
               Copyright © Orchard Publications
   209   210   211   212   213   214   215   216   217   218   219