Page 215 - Numerical Analysis Using MATLAB and Excel
P. 215

Chapter 5  Differential Equations, State Variables, and State Equations


               6. Expansion of the given matrix yields
                                ·         ·          ·         ·
                               x =  x 2     x =  x 3     x =  x 2     x =  – x –  2x –  3x –  4x +  ut()
                                                     3
                                           2
                                1
                                                                                 3
                                                                                      4
                                                                           2
                                                               4
                                                                      1
                 Letting x =  y  we obtain
                                             dy 4   dy 3   dy 2   dy
                                             -------- + 4 -------- +  3-------- +  2------ +  y =  ut()
                                             dt 4    dt 3  dt 2   dt
               7.
                   a.
                                           (
                                                  )
                                              –
                      A =    1  2       det A λI =    det⎜  ⎛  1  2  –  λ  10  ⎞  ⎟  =  det  1 – λ  2  =  0
                             3 – 1                       ⎝  3 – 1     01 ⎠           3    –  1 –  λ
                                                                     2
                                  )
                    (  1 λ – –   λ –  6 =  0 ,  1–  –  λ +  λ  λ +  2  –  6 =  0 , λ =  7 , and thus λ =  7  λ =  –  7
                          )
                           (
                       –
                             1
                                                                                                    2
                                                                                       1
                  b.
                                                                                       –
                                                    )
                                             (
                        B =    a0         det B λI =    det⎜  ⎛  a0  –  λ  10  ⎞  ⎟  =  det  a λ  0  =  0
                                                –
                               a –  b                      ⎝  a –  b    01 ⎠           a –  b –  λ
                                                   )
                                            )
                                             (
                                       (  a λ b –  λ =  0 , and thus λ =  a    λ =  b
                                         –
                                                                                2
                                                                    1
                   c.
                                                                     ⎛                          ⎞
                                  0    1    0                        ⎜  0    1   0      10 0    ⎟
                                                       (
                                                             )
                           C =    0    0    1       det C λI =    det⎜  0    0   1  –  λ  01 0 ⎟
                                                          –
                                 – 6 – 11 – 6                        ⎜  ⎝  – 6 – 11 – 6  00 1 ⎠  ⎟
                                                                             – λ    1    0
                                                                       =  det  0  – λ    1    =  0
                                                                                         –
                                                                             – 6 – 11 – 6 λ
                                                        2
                       2
                                                   3
                              )
                                         )
                        (
                      λ – 6 λ – –    – (  11 – ) (  λ  =  λ +  6λ +  11λ +  6 =  0  and it is given that λ =  – 1 . Then,
                                 6
                            –
                                                                                            1
                                        2
                                  3
                                 λ +  6λ +  11λ + 6    2
                                                                                      )
                                 ---------------------------------------------- =  λ +  5λ + ⇒  (  λ + 1 λ  )  (  +  2 λ  )  (  +  3 =  0
                                                               6
                                      (  λ + 1 )
                      and thus λ =   – 1    λ =   – 2     λ =  – 3
                                1
                                                           1
                                              2
               8.
                  a. Matrix   is the same as Matrix C in Exercise 7. Then,
                             A
                                             λ =  – 1     λ =   – 2    λ =   – 3
                                                                         1
                                              1
                                                           2
               5−54                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                             Copyright © Orchard Publications
   210   211   212   213   214   215   216   217   218   219   220