Page 288 - Numerical Methods for Chemical Engineering
P. 288

Finite differences for a convection/diffusion equation              277





                           caracteristic ine 2
                               se    v
                         tis rein neiter
                         inences  nr           rein
                         is inenced           inenced


                       rein tat
                       inences     t          caracteristic ine 1

                                                  se
                                   tis rein neiter
                           t       inences  nr
                                   is inenced
                                                       t
                  Figure 6.9 Space-time diagram of the 1-D convection equation showing characteristic lines.


                  infinitesimally close together,

                                          z q = z p + dz  t q = t p + dt            (6.103)

                  we use a truncated Taylor expansion to relate the field values at P and Q,

                                                    ∂ϕ        ∂ϕ
                                        ϕ q − ϕ p = dt     + dz                     (6.104)
                                                    ∂t        ∂z
                                                       (P)       (P)
                  We apply similar expansions to the first derivatives,
                                                        2          2

                                     ∂ϕ      ∂ϕ        ∂ ϕ        ∂ ϕ
                                          −       = dt       + dz
                                     ∂t    (Q)  ∂t    (P)  ∂t  2   (P)  ∂z∂t    (P)
                                                                                    (6.105)
                                                        2           2

                                     ∂ϕ      ∂ϕ        ∂ ϕ         ∂ ϕ
                                          −       = dt        + dz
                                     ∂z      ∂z        ∂t∂z        ∂z 2
                                        (Q)     (P)         (P)        (P)
                  We now combine these two expansions of the first derivatives with the condition that the
                  differential equation be satisfied at P ,
                                      2         2         2
                                     ∂ ϕ       ∂ ϕ       ∂ ϕ
                                    a       + b       + c       + f (P) = 0         (6.106)
                                     ∂t 2      ∂t∂z      ∂z 2
                                         (P)        (P)      (P)
                  to obtain the linear system
                                           2     
                                           ∂ ϕ
                                                                       

                                                        ∂ϕ        ∂ϕ
                                            ∂t                  −
                                            2    
                             dt  dz         2                     ∂t     
                                            (P)    ∂t
                                                         (Q)
                                           ∂ ϕ                         (P) 
                                 dt  dz              ∂ϕ        ∂ϕ               (6.107)
                                                   =
                                        
                                          ∂t∂z    (P)         −      
                             a   b   c     2          ∂z    (Q)  ∂z    (P)  
                                          ∂ ϕ    
                                                             − f (P)

                                           ∂z 2
                                               (P)
   283   284   285   286   287   288   289   290   291   292   293