Page 291 - Numerical Methods for Chemical Engineering
P. 291

280     6 Boundary value problems



                   At the reactor inlet and outlet we use Danckwerts’ boundary conditions. At the inlet, the
                   flux of species j = A, B, C, D entering the reactor is v z c j0 , but once inside the reactor and
                   in the presence of dispersion, the flux is v z c j − D(dc j /dz). Balancing these two fluxes at
                   z = 0 yields the inlet boundary condition

                                                           dc j
                                          v z [c j (0) − c j0 ] − D     = 0          (6.117)
                                                           dz
                                                              0
                   When D → 0, c j (0) = c j0 , but when D →∞, this boundary condition correctly enforces
                   dc j /dz| 0 = 0. If the reaction stops once the stream leaves the reactor, the concentration
                   profile becomes uniform, and we use the outlet boundary condition


                                                  dc j
                                                        = 0                          (6.118)

                                                   dz
                                                      L
                   Solution by upwind finite differences
                   We solve the coupled set of PDEs (6.116) with the inlet boundary conditions (6.117)
                   and outlet boundary conditions (6.118) using upwind finite differencing. We place
                   a grid of N uniformly-spaced points 0 < z 1 < z 2 < ··· < z N < L, z k = k( z), z
                   = L(N + 1) −1  and write each PDE of (6.116) as
                                                        2
                                               dc j   d c j
                                       0 =− v z   + D    2  + s j [{c m (z)}]        (6.119)
                                               dz      dz
                   where {c m (z)} denotes the set of local concentrations, and the source terms for each field
                   are

                           s A [{c m (z)}] =−k 1 c A c B  s B [{c m (z)}] =−k 1 c A c B − k 2 c B c C
                                                                                     (6.120)
                           s C [{c m (z)}] = k 1 c A c B − k 2 c B c C  s D [{c m (z)}] = k 2 c B c C
                   Applying upwind finite differences, we obtain for each grid point z k and each species
                   j = A, B, C, D a nonlinear algebraic equation


                              c j (z k ) − c j (z k−1 )  c j (z k−1 ) − 2c j (z k ) + c j (z k+1 )
                     0 =− v z                 + D               2           + s j [{c m (z k )}]
                                     z                      ( z)
                                                                                     (6.121)
                   Collecting terms, we have
                           0 = α lo c j (z k−1 ) + α mid c j (z k ) + α hi c j (z k+1 ) + s j [{c m (z k )}]  (6.122)

                   with the coefficients
                                      D                  2D             D
                               v z                 v z
                          α lo =  +     2  α mid =−   −     2    α hi =   2          (6.123)
                                z   ( z)            z   ( z)           ( z)
                   We enforce the boundary conditions by removing the nonexistent unknowns c j (z 0 ) and
                   c j (z N+1 ) through the discretizations of (6.117) and (6.118),

                                      (in)     c j (z 1 ) − c j (z 0 )
                        0 = v z c j (z 0 ) − c  − D           c j (z N+1 ) = c j (z N )  (6.124)
                                      j0
                                                     z
   286   287   288   289   290   291   292   293   294   295   296