Page 343 - Numerical Methods for Chemical Engineering
P. 343

332     7 Probability theory and stochastic simulation



                   hence,
                                                                           1
                                               n + x/l      n + x/l     $ %
                                                                         n
                               ln[P(x; n,l)] ≈−         ln          + ln
                                                  2           2          2
                                                                            1
                                                                         n
                                               n − x/l      n − x/l     $ %
                                            −            ln         + ln              (7.75)
                                                  2            2         2
                   The rule ln(ab) = ln(a) + ln(b) yields
                                                             1
                                     n + x/l      n + x/l  2
                     ln[P(x; n,l)] ≈−         ln
                                        2           2     n
                                     n − x/l      n − x/l  2
                                                             1
                                  −           ln
                                        2           2     n

                                     n + x/l  9 .    x  /:   n − x/l  9 .    x  /:
                                ≈−            ln 1 +     −            ln 1 −          (7.76)
                                        2            nl        2            nl
                   In the limit of large n, the high degree of backtracking in the random walk means that |x|
                     nl, hence we use the Taylor expansions around x/(nl) = 0,
                               x     x   1   x             x       x   1  x
                          .      /         $  % 2     .      /           $  % 2
                        ln 1 +    ≈    −            ln 1 −    ≈−     −                (7.77)
                               nl    nl  2 nl              nl     nl   2 nl
                   to obtain
                                     n + x/l   x   1  $  x  %  n − x/l    x    1  $  x  %
                                                         2  1                        2  1
                     ln[P(x; n,l)] ≈−            −          −           −    −
                                        2      nl  2 nl           2       nl   2 nl
                                                                                      (7.78)
                   Collecting terms yields the particularly simple result
                                                             x 2
                                             ln[P(x; n,l)] ≈−                         (7.79)
                                                            2nl  2
                                                       -  +∞
                   Taking the exponential and renormalizing to  P(x; n,l)dx = 1 yields
                                                        −∞
                                                     1           x  2
                                        P(x; n,l) = √     exp −    2                  (7.80)
                                                    2πnl 2      2nl
                            2
                                 2
                   Defining σ = nl produces the Gaussian (normal) distribution
                                                     1         x 2
                                          P(x; σ) =  √   exp −   2                    (7.81)
                                                   σ 2π        2σ
                   We note by symmetry of the exponential argument that the average is zero:
                                                           x         x
                                    +∞                +∞
                                  '                 '                  2
                        x = E(x) =     xP(x; σ)dx =       √    exp −   2  dx = 0      (7.82)
                                                     −∞ σ 2π         2σ
                                    −∞
                   The variance is
                                          '                 '       2          2
                                            +∞                +∞   x          x
                                      2         2                                        2
                    var(x) = E[(x − E(x)) ] =  x P(x; σ)dx =       √   exp −    2  dx = σ
                                                             −∞ σ 2π          2σ
                                           −∞
                                                                                      (7.83)
                   Therefore, σ is the standard deviation of the Gaussian distribution. The Gaussian distribu-
                   tion is plotted in Figure 7.9 for various values of σ.
   338   339   340   341   342   343   344   345   346   347   348