Page 342 - Numerical Methods for Chemical Engineering
P. 342

Important probability distributions                                 331



                  The Gaussian (normal) distribution

                  Let us return to the example of the random walk, in which the net displacement after n steps
                  of length l is
                                           n
                                          	                 1,  if heads
                                     x = l   (2ζ j − 1)  ζ j =                       (7.65)
                                                            0,  if tails
                                          j=1
                  If we perform n coin tosses, and n H are heads, the net displacement is
                                     x
                                       = n H − n T = n H − (n − n H ) = 2n H − n     (7.66)
                                     l
                  Hence for a given displacement, the numbers of heads and tails are
                                        1  $  x  %              1  $   x  %
                                   n H =  n +      n T = n − n H =  n −              (7.67)
                                        2     l                 2      l
                  For a fair coin, we obtain from the binomial distribution,
                                                     n                    n

                                             n    1           n!       1
                                 P(n, n H ) =         =                              (7.68)
                                            n H   2       n H !(n − n H )!  2
                  the probability of observing a net displacement x after n steps of length l,
                                                                         n

                                                       n!             1
                                  P(x; n,l) =                                        (7.69)
                                             [(n + x/l)/2]![(n − x/l)/2]!  2
                  We evaluate this equation in the limit n →∞, taking the natural logarithm,
                     ln[P(x; n,l)] = ln(n!) − ln{[(n + x/l)/2]!}− ln{[(n − x/l)/2]!}− n ln 2  (7.70)

                  We remove the factorials by using Stirling’s approximation
                                 )      *
                                    N        N        '  N
                                   0
                        ln(N!) = ln   m   =    ln(m) ≈    ln xdx = N ln N − N        (7.71)
                                   m=1      m=1        1
                  Therefore, for large n,wehave
                                                n + x/l    n + x/l     n + x/l

                       ln[P(x; n,l)] ≈ n ln n − n −     ln          +
                                                   2          2           2

                                        n − x/l    n − x/l     n − x/l
                                    −           ln         +           − n ln 2      (7.72)
                                          2           2          2
                  After cancelling out terms, this simplifies to
                                                n + x/l    n + x/l

                               ln[P(x; n,l)] ≈−         ln
                                                   2          2
                                                                          n

                                                n − x/l    n − x/l       $ %
                                             −          ln          − n ln           (7.73)
                                                   2          2           2
                  We further simplify the expression by noting
                                       n       n + x/l    n − x/l      n
                                      $ %                         1  $ %
                                  n ln    =            +            ln               (7.74)
                                       2         2           2         2
   337   338   339   340   341   342   343   344   345   346   347