Page 342 - Numerical Methods for Chemical Engineering
P. 342
Important probability distributions 331
The Gaussian (normal) distribution
Let us return to the example of the random walk, in which the net displacement after n steps
of length l is
n
1, if heads
x = l (2ζ j − 1) ζ j = (7.65)
0, if tails
j=1
If we perform n coin tosses, and n H are heads, the net displacement is
x
= n H − n T = n H − (n − n H ) = 2n H − n (7.66)
l
Hence for a given displacement, the numbers of heads and tails are
1 $ x % 1 $ x %
n H = n + n T = n − n H = n − (7.67)
2 l 2 l
For a fair coin, we obtain from the binomial distribution,
n n
n 1 n! 1
P(n, n H ) = = (7.68)
n H 2 n H !(n − n H )! 2
the probability of observing a net displacement x after n steps of length l,
n
n! 1
P(x; n,l) = (7.69)
[(n + x/l)/2]![(n − x/l)/2]! 2
We evaluate this equation in the limit n →∞, taking the natural logarithm,
ln[P(x; n,l)] = ln(n!) − ln{[(n + x/l)/2]!}− ln{[(n − x/l)/2]!}− n ln 2 (7.70)
We remove the factorials by using Stirling’s approximation
) *
N N ' N
0
ln(N!) = ln m = ln(m) ≈ ln xdx = N ln N − N (7.71)
m=1 m=1 1
Therefore, for large n,wehave
n + x/l n + x/l n + x/l
ln[P(x; n,l)] ≈ n ln n − n − ln +
2 2 2
n − x/l n − x/l n − x/l
− ln + − n ln 2 (7.72)
2 2 2
After cancelling out terms, this simplifies to
n + x/l n + x/l
ln[P(x; n,l)] ≈− ln
2 2
n
n − x/l n − x/l $ %
− ln − n ln (7.73)
2 2 2
We further simplify the expression by noting
n n + x/l n − x/l n
$ % 1 $ %
n ln = + ln (7.74)
2 2 2 2