Page 360 - Numerical Methods for Chemical Engineering
P. 360

Brownian dynamics and SDEs                                          349



                  Taking the expectation of (7.184) over a very small time step, the stochastic contribution
                  cancels out as  dW t  = 0. Thus,

                                             ∂F          1  ∂ F         2
                                                              2
                                   L t F(x) =    a(t, x) +        [b(t, x)]         (7.186)
                                             ∂x          2   ∂x  2


                  Let p(t, x|t , x ) be the transition probability that if the particle is at x at time t , then at


                  time t,itisat x. Then, we could write (7.185) as
                                      1   '  +∞                           1



                         L t F(x) = lim       F(x )p(t + δt, x |t, x)dx − F(x)      (7.187)
                                 δt→0 δt
                                          −∞


                  Let us multiply (7.187) by p(t, x|t , x ) with t < t and integrate over x:

                            +∞
                          '


                               [L t F(x)]p(t, x|t , x )dx
                           −∞
                                 1   '  +∞   '  +∞




                          = lim                F(x )p(t + δt, x |t, x)dx     p(t, x|t , x )dx
                            δt→0 δt
                                     −∞    −∞
                                 +∞
                               '                    1


                             −      F(x)p(t, x|t , x )dx                            (7.188)
                                −∞
                  We now use the Chapman–Kolmogorov equation,
                            +∞
                          '






                               p(t + δt, x |t, x)p(t, x|t , x )dx = p(t + δt, x |t , x )  (7.189)
                           −∞
                  to write (7.188) as
                        +∞
                      '


                           [L t F(x)]p(t, x|t , x )dx
                       −∞
                               1   '  +∞                        '  +∞                1




                        = lim          F(x )p(t + δt, x |t , x )dx −  F(x)p(t, x|t , x )dx



                           δt→0 δt
                                   −∞                            −∞
                                                                                    (7.190)
                  In the first integral on the right-hand side x is only a dummy variable of integration, and

                  we are free to replace it with x,
                       '
                         +∞

                            [L t F(x)]p(t, x|t , x )dx

                        −∞
                                1   '  +∞                      '  +∞                1




                         = lim          F(x)p(t + δt, x|t , x )dx −  F(x)p(t, x|t , x )dx
                           δt→0 δt
                                    −∞                          −∞
                                                                                    (7.191)
                  Collecting the integrals on the right-hand side, taking the limit δt → 0, and using the finite
                  difference approximation
                            ∂              1

                              p(t, x|t , x ) ≈  [p(t + δt, x|t , x ) − p(t, x|t , x )]  (7.192)
                            ∂t             δt
                  we have
                        +∞                         +∞       ∂
                      '                          '

                           [L t F(x)]p(t, x|t , x )dx =  F(x)  p(t, x|t , x ) dx    (7.193)
                                                           ∂t
                       −∞                         −∞
   355   356   357   358   359   360   361   362   363   364   365