Page 406 - Numerical Methods for Chemical Engineering
P. 406

Confidence intervals from the approximate posterior density          395



                  Confidence intervals from the approximate posterior density

                  The approximate posterior density π(θ,σ|y) for single-response data (8.116), describes
                  the joint uncertainty in both θ and σ. Of more interest is the marginal posterior density for
                  θ,
                                                     ∞
                                                   '
                                           π(θ|y) =    π(θ,σ|y)dσ                   (8.117)
                                                    0
                  This is the posterior for θ, without regard to the exact value of σ. As we discard σ by
                  “integrating it out,” it is called a nuisance parameter.
                    For the approximate posterior (8.116), the marginal posterior density can be calculated
                  analytically,
                             ∞                    1
                           '                                                  −N/2
                                                            T
                                                               T
                   π(θ|y) =    π(θ,σ|y)dσ ∝ 1 +     (θ − θ M ) [X X| θ M ](θ − θ M )  (8.118)
                                                 νs 2
                             0
                  Note again that for a linear model, this marginal posterior is exact.
                  Confidence interval for the mean of a population and
                  the t-distribution
                  We now form confidence intervals for the model parameters and the predicted responses
                  using this approximate marginal distribution. First, it is best to consider the simple model
                                   [k]
                  (8.104), y [k]  = θ + ε . After N measurements, the posterior density is
                                                     1    2          2
                                                                      1
                                        −(N+1)
                             p(θ, σ|y) ∝ σ    exp −    [νs + N(θ − ¯ y) ]           (8.119)
                                                    2σ  2
                  where the sample mean and sample variance are
                                    N           1  N

                                            2
                            ¯ y = N −1  y [k]  s =  	   y [k]  − ¯ y   2  ν = N − 1  (8.120)
                                                ν
                                   k=1            k=1
                  The marginal posterior density for θ is
                                                                   −(ν+1)/2
                                                         N       2
                                     ∞
                                   '
                           p(θ|y) =    p(θ, σ|y)dσ ∝ 1 +  2  (θ − ¯ y)              (8.121)
                                    0                   νs
                  Defining the t-statistic,
                                                     ¯ y − θ
                                                 t ≡   √                            (8.122)
                                                    (s/ N)
                  whose distribution satisfies p(t|ν)dt = p(θ|y)dθ,wehave
                                                           −(ν+1)/2
                                                        t
                                                        2
                                           p(t|ν) ∝ 1 +                             (8.123)
                                                        ν
                  This is the famous t-distribution of Student, a pseudonym for W. S. Gosset ( Gosset, 1908).
                  As the number of degrees of freedom v approaches infinity, the t-distribution reduces to a
   401   402   403   404   405   406   407   408   409   410   411