Page 453 - Numerical Methods for Chemical Engineering
P. 453

442     9 Fourier analysis



                   Applying quadrature, we write (9.37) as
                                     N
                                                              N
                                 1  	                   ( t)  	    −im( ω)(k−1)( t)
                        F(ω m ) ≈ √     f (t k )e  −iω m t k  ( t) = √  f k e         (9.38)
                                 2π                       2π
                                     k=1                     k=1
                   We next show that the F(ω m ) values have ω-periodicity,
                                   F(ω m + l2ω max ) = F(ω m )  l = 0, ±1, ±2,...     (9.39)

                   Using (9.31) and (9.32),

                                                    N
                           ω m + l2ω max = m( ω) + l2   ( ω) = [m + lN]( ω)           (9.40)
                                                     2
                                             a b
                   We next use (9.38) and e a+b  = e e to obtain
                                               N
                                         ( t)  	    −im( ω)(k−1)( t) −ilN( ω)(k−1)( t)
                         F(ω m + l2ω max ) = √    f k e         e                     (9.41)
                                           2π
                                              k=1
                   Now, as
                                                     π    2P     2π
                                                    $  %
                                         ( ω)( t) =            =
                                                     P     N      N
                   we have
                                    −ilN( ω)(k−1)( t)  −ilN(k−1)(2π/N)  −i(l2π)(k−1)
                                   e            = e            = e                    (9.42)
                               a b
                   Using e ab  = (e ) , this becomes
                                   .      / (k−1)
                         −i(l2π)(k−1)  −i(l2π)                         (k−1)
                        e        = e           = [cos(−l2π) + i sin (−l2π)]  = 1      (9.43)
                   Therefore, we have ω-periodicity,
                                                  N
                                            ( t)  	    −im( ω)(k−1)( t)
                            F(ω m + l2ω max ) = √   f k e          = F(ω m )          (9.44)
                                              2π
                                                 k=1
                   Rather than evaluating F(ω) at the frequencies ω m = m( ω)in (−ω  ,ω max ), we thus
                                                                           max
                   could instead evaluate F(ω)at ω n = (n − 1)( ω)in [0, 2ω max ), and then obtain the values
                   at “negative” frequencies using F(ω n − 2ω max ) = F(ω n ). We then have
                                        N
                                   ( t)  	   −i(n−1)( ω)(k−1)( t)   (n − 1)π
                           F(ω n ) ≈ √     f k e               ω n =                  (9.45)
                                    2π  k=1                            P
                                    a b
                   Again using e ab  = (e ) ,
                                                   N
                                             ( t)  	      −i( ω)( t) (n−1)(k−1)

                                     F(ω n ) ≈ √     f k e                            (9.46)
                                               2π
                                                  k=1
                   As ( ω)( t) = 2π/N,wehave e −i( ω)( t)  = e −i2π/N  ≡ W and thus
                                                      N
                                                 ( t)  	     (n−1)(k−1)
                                         F(ω n ) ≈ √     f k W                        (9.47)
                                                  2π
                                                      k=1
   448   449   450   451   452   453   454   455   456   457   458