Page 454 - Numerical Methods for Chemical Engineering
P. 454

Fourier series and transforms in one dimension                      443



                  From these results, we define the discrete Fourier transform
                               N
                              	      (n−1)(k−1)       −i2π/N
                         F n =    f k W         W = e          n = 1, 2,..., N       (9.48)
                              k=1
                  such that
                                               ( t)           (n − 1)π
                                       F(ω n ) ≈ √  F n  ω n =                       (9.49)
                                                2π               P
                  Similarly, we approximate the inverse Fourier transform
                                       +∞                   2ω max
                                                             '
                                   1           iωt      1            iωt
                                      '
                           f (t) = √      F(ω)e  dω → √         F(ω)e   dω           (9.50)
                                   2π                    2π
                                      −∞                     0
                  by
                                                    N
                                                1  	        iω n t
                                         f (t) ≈ √     F(ω n )e  ( ω)                (9.51)
                                                2π
                                                   n=1
                  Substituting for F(ω n ) and ω n ,wehaveat t k = (k − 1) t
                                          ( ω)   ( t)  	     i(n−1)( ω)(k−1)( t)
                                                        N
                                  f (t k ) ≈ √   √        F n e                      (9.52)
                                           2π      2π  n=1
                                   a b
                  Using again e  ab  = (e ) and ( ω)( t) = 2π/N,
                                  N                          N
                                1  	   .  i( ω)( t) / (n−1)(k−1)  1  	  ∗ (n−1)(k−1)
                         f (t k ) ≈  F n e             =        F n [W ]             (9.53)
                               N                          N
                                  n=1                       n=1
                          ∗
                  where W = [e −i2π/N ∗  i2π/N  = e i( ω)( t) . These relations define the discrete Fourier
                                    ] = e
                  transform pair
                                    N                        N
                                   	      (n−1)(k−1)       1  	     ∗ (n−1)(k−1)
                              F n =    f k W          f k =     F n [W ]
                                                          N
                                   k=1                       n=1                     (9.54)
                                      W = e −i2π/N        n = 1, 2,..., N
                  that is related to the original, continuous Fourier transform pair by
                             ( t)           (n − 1)π
                     F(ω n ) ≈ √  F n  ω n =            f (t k ) = f k  t k = (k − 1) t  (9.55)
                              2π               P
                  The fast Fourier transform (FFT)

                  Computing the discrete Fourier transform directly from (9.48) requires a number of oper-
                                    2
                  ations that scales as N . Here, we present an alternative decimation procedure that scales
                                   2
                  only as Nlog N « N . Let us break the summation over k into contributions from the even
                             2
                  and odd terms,
                                          N                N
                                         	      (n−1)(k−1)  	    (n−1)(k−1)
                                    F n =    f k W      +     f k W                  (9.56)
                                         k=1               k=1
                                        k even            k odd
   449   450   451   452   453   454   455   456   457   458   459