Page 158 - Numerical methods for chemical engineering
P. 158

144     3 Matrix eigenvalue analysis



                   and write Ay in the form of (3.238),
                                        [1]     
                                    σ 1 v  · y         (0) v [1]  · y   

                                         .
                                        . .              . .  
                                                         .    
                                    σ r v  · y             [r]  
                                        [r]     
                                                     (0) v
                                                                  = W0 = 0
                          Ay = W        [r+1]      = W     · y                   (3.242)
                                  σ r+1 v
                                            · y 
                                                       σ r+1 (0) 
                                                          .
                                         .                      
                                         .                 .    
                                                          .
                                        .     

                                    σ N v [N]  · y        σ N (0)
                   Thus, the right singular vectors for the zero singular values form an orthonormal basis for
                   the null space (kernel) of A,
                                     [1]    [r]
                         K A = span v ,..., v    σ 1 = ... = σ r = 0  dim(K A ) = r  (3.243)
                   We obtain a basis for the range of A by continuing the calculation of Ax,
                                                              [1]    
                                                           σ 1 v  · x
                                                      
                                          |         |         [2]    
                                                         σ 2 v  · x 
                                  Ax =   w [1]  ... w  [N]    .  
                                                              .    
                                          |         |         .    
                                                               [N]
                                                          σ N v  · x
                                         w σ 1 v  · x +· · · + w  σ N v  · x
                                          [1]     [1]        [N]     [N]    
                                          1                   1
                                           [1]                [N]          
                                        w σ 1 v [1]  · x +· · · + w  σ N v [N]
                                       
                                          2                   2        · x 
                                     =                  .                          (3.244)
                                                         .
                                                                         
                                                        .                
                                           [1]



                                         w σ 1 v [1]  · x +· · · + w [N] σ N v [N]  · x
                                           N                  N
                   to obtain
                                                  N

                                                         [ j]     [ j]
                                            Ax =     σ j v  · x w                    (3.245)
                                                  j=1
                   If σ 1 =· · · = σ r = 0 and σ j > 0 for j = r + 1,..., N, then
                                                  N
                                                 	        [ j]     [ j]
                                            Ax =     σ j v  · x w                    (3.246)
                                                 j=r+1
                                                 σ j >0
                                  N
                   Thus, any Ax ∈   can be written as linear combination of the left singular vec-
                   tors {w  [r+1] ,..., w  [N] }, so that the range of A is
                                   [r+1]    [N]
                       R A = span w   ,..., w    σ j∈ [r+1,N] > 0  dim(K A ) = N − r  (3.247)
                   The right and left singular vectors thus provide orthonormal basis sets for the kernel and
                   range respectively,

                             K A = span v [ j]   σ j = 0  R A = span w  [ j]   σ j > 0  (3.248)

                   For Ax = b,if A is singular, we can check easily for the existence of solutions using SVD.
                   If b ∈  A , there exist an infinite number of solutions
                                                  N
                                                 	      [ j]
                                          x = z +    c j v   c j ∈                   (3.249)
                                                  j=1
                                                 σ j =0
   153   154   155   156   157   158   159   160   161   162   163