Page 162 - Numerical methods for chemical engineering
P. 162

148     3 Matrix eigenvalue analysis



                   S inv =
                       0.1578   0         0       0   0
                       0        0.7981   0        0    0
                       0        0        0.8878   0    0
                            *
                       *
                               *

                   b=V S inv U y,
                   b=
                      1.0000
                      2.0000
                      3.0000
                   Thus, the fitted parameters of the linear model are β 0 = 1,β 1 = 2,β 2 = 3. This approach
                   to the design and analysis of data sets for parameter estimation will be considered again in
                   Chapter 8.


                   Computing the roots of a polynomial

                   The eigenvalues of a matrix A are roots of the characteristic polynomial of degree N, det(A
                   − λI) = 0. Therefore, we can compute the roots of any polynomial of degree N
                                               N
                                    p N (x) = a N x + a N−1 x N−1  + ··· + a 1 x + a 0  (3.263)
                   by calculating the eigenvalues of a matrix A for which det(A − λI) = p N (λ). From expan-
                   sion by minors in the first row, the auxiliary matrix for p N (x)is
                             (−a N−1 /a N )(−a N−2 /a N )  ... (−a 1 /a N )(−a 0 /a N )
                                                                           
                                  1           0       ...    0         0
                                                                           
                                                                           
                                 0           1       ...    0         0    
                        A =                                                        (3.264)
                                  .           .               .         .
                                  .           .               .         .
                                                                           
                                 .           .               .         .   
                                  0           0       ...    1         0
                   For example, consider the polynomial of degree three
                                                         2
                                                    3
                                            p 3 (x) = x − 3x + x − 3                 (3.265)
                   The auxiliary matrix is
                                                    3  −13
                                                            
                                               A =   1  0  0                       (3.266)
                                                    0   1   0
                   The eigenvalues of this matrix are

                                          λ 1 = 3  λ 2 = i  λ 3 =−i                  (3.267)
                   It is easy to show that these eigenvalues are in fact roots of (3.265):
                                               2
                                         3
                                p 3 (3) = (3) − 3(3) + (3) − 3 = 27 − 27 + 3 − 3 = 0
                                        3
                                              2
                                p 3 (i) = (i) − 3(i) + (i) − 3 =−i + 3 + i − 3 = 0   (3.268)
                                            3
                                                   2
                                p 3 (−i) = (−1) − 3(−i) + (−i) − 3 = i + 3 − i − 3 = 0
                   In MATLAB, this technique is employed by roots.
   157   158   159   160   161   162   163   164   165   166   167