Page 194 - Optofluidics Fundamentals, Devices, and Applications
P. 194

Optofluidic Photonic Crystal Fibers: Pr operties and Applications   169


               multitude of applications while at the same time inherently interfacing
               using high-quality fiber optics and associated support apparatus.




          References
                  1.  D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technol-
                   ogy through the fusion of microfluidics and optics,” Nature, 442, 381–86
                   (2006).
                  2.  C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new
                   river of light,” Nature Photon., 1, 106–114 (2007).
                  3.  D. Erickson, T. Rockwood, T. Emery, et al., “Nanofluidic tuning of photonic
                   crystal circuits,” Opt. Lett., 31, 59–61 (2006).
                  4.  J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett.,
                   20, 239–241 (1972).
                  5.  C. Monat, C. Grillet, R. Domachuk, et al., “Frontiers in microphotonics:
                   tunability and all-optical control,” Laser Phys. Lett., 4, 177–186 (2007).
                  6.  R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE, 61,
                   452–462 (1973).
                  7.  P. Domachuk, H. C. Nguyen, B. J. Eggleton, et al., “Microfluidic tunable pho-
                   tonic band-gap device,” Appl. Phys. Lett., 84, 1838–1840 (2004).
                  8.  C. Kerbage, M. Sumetsky, and B. J. Eggleton, “Polarisation tuning by micro-
                   fluidic motion in air-silica microstructured optical fiber,” Electron. Lett., 38,
                   1015–1017 (2002).
                  9.  B. J. Eggleton, C. Kerbage, P. S. Westbrook, et al., “Microstructured optical
                   fiber devices,” Opt. Express, 9, 698–713 (2001).
                 10.  T. M. Monro, W. Belardi, K. Furusawa, et al., “Sensing with microstructured
                   optical fibers,” Meas. Sci. Technol., 12, 854–858 (2001).
                 11.  B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., “Grating resonances in
                   air-silica microstructured optical fibers,” Opt. Lett., 24, 1460–1462 (1999).
                 12.  L. Provino, J. M. Dudley, H. Maillotte, et al., “Compact broadband continuum
                   source based on microchip laser pumped microstructured fiber,” Electron.
                   Lett., 37, 558–560 (2001).
                 13.  J. C. Knight, T. A. Birks, B. J. Mangan, et al., “Microstructured silica as an
                   optical-fiber material,” MRS Bull., 26, 614–617 (2001).
                 14.  J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta
                   air-silica microstructure optical fibers,” Opt. Lett., 25, 796–798 (2000).
                 15.  J. C. Knight, “Photonic crystal fibers,” Nature, 424, 847–851 (2003).
                 16.  J. C. Knight, T. A. Birks, P. St. J. Russell, et al., “All-silica single-mode optical
                   fiber with photonic crystal cladding,” Opt. Lett., 21, 1547–1549 (1996).
                 17.  T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic
                   crystal fiber,” Opt. Lett., 22, 961–963 (1997).
                 18.  R. F. Cregan, B. J. Mangan, J. C. Knight, et al., “Single-mode photonic band
                   gap guidance of light in air,” Science, 285, 1537–1539 (1999).
                 19.  F. Benabid, J. C. Knight, G. Antonopoulos, et al., “Stimulated Raman scat-
                   tering in hydrogen-filled hollow-core photonic crystal fiber,” Science, 298,
                   399–402 (2002).
                 20.  W. G. French, J. B. MacChesney, and A. D. Pearson, “Glass fibers for optical
                   communications,” Ann. Rev. Mat. Sci., 5, 373–394 (1975).
                 21.  T. Miya, Y. Terunuma, T. Hosaka, et al., “Ultimate low-loss single-mode fiber
                   at 1.55 μm,” Electron. Lett., 15, 106–108 (1979).
                 22.  R. L. Kozodoy, A. T. Pagkalinawan, and J. A. Harrington, “Small-bore hollow
                   waveguides for delivery of 3 μm laser radiation,” Appl. Opt., 35, 1077–1082
                   (1996).
                 23.  B. J. Eggleton, P. S. Westbrook, C. A. White, et al., “Cladding-mode-resonances
                   in air-silica microstructure optical fibers,” J. Lightwave Technol., 18, 1084–1100
                   (2000).
   189   190   191   192   193   194   195   196   197   198   199