Page 194 - Optofluidics Fundamentals, Devices, and Applications
P. 194
Optofluidic Photonic Crystal Fibers: Pr operties and Applications 169
multitude of applications while at the same time inherently interfacing
using high-quality fiber optics and associated support apparatus.
References
1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technol-
ogy through the fusion of microfluidics and optics,” Nature, 442, 381–86
(2006).
2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new
river of light,” Nature Photon., 1, 106–114 (2007).
3. D. Erickson, T. Rockwood, T. Emery, et al., “Nanofluidic tuning of photonic
crystal circuits,” Opt. Lett., 31, 59–61 (2006).
4. J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett.,
20, 239–241 (1972).
5. C. Monat, C. Grillet, R. Domachuk, et al., “Frontiers in microphotonics:
tunability and all-optical control,” Laser Phys. Lett., 4, 177–186 (2007).
6. R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE, 61,
452–462 (1973).
7. P. Domachuk, H. C. Nguyen, B. J. Eggleton, et al., “Microfluidic tunable pho-
tonic band-gap device,” Appl. Phys. Lett., 84, 1838–1840 (2004).
8. C. Kerbage, M. Sumetsky, and B. J. Eggleton, “Polarisation tuning by micro-
fluidic motion in air-silica microstructured optical fiber,” Electron. Lett., 38,
1015–1017 (2002).
9. B. J. Eggleton, C. Kerbage, P. S. Westbrook, et al., “Microstructured optical
fiber devices,” Opt. Express, 9, 698–713 (2001).
10. T. M. Monro, W. Belardi, K. Furusawa, et al., “Sensing with microstructured
optical fibers,” Meas. Sci. Technol., 12, 854–858 (2001).
11. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., “Grating resonances in
air-silica microstructured optical fibers,” Opt. Lett., 24, 1460–1462 (1999).
12. L. Provino, J. M. Dudley, H. Maillotte, et al., “Compact broadband continuum
source based on microchip laser pumped microstructured fiber,” Electron.
Lett., 37, 558–560 (2001).
13. J. C. Knight, T. A. Birks, B. J. Mangan, et al., “Microstructured silica as an
optical-fiber material,” MRS Bull., 26, 614–617 (2001).
14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta
air-silica microstructure optical fibers,” Opt. Lett., 25, 796–798 (2000).
15. J. C. Knight, “Photonic crystal fibers,” Nature, 424, 847–851 (2003).
16. J. C. Knight, T. A. Birks, P. St. J. Russell, et al., “All-silica single-mode optical
fiber with photonic crystal cladding,” Opt. Lett., 21, 1547–1549 (1996).
17. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic
crystal fiber,” Opt. Lett., 22, 961–963 (1997).
18. R. F. Cregan, B. J. Mangan, J. C. Knight, et al., “Single-mode photonic band
gap guidance of light in air,” Science, 285, 1537–1539 (1999).
19. F. Benabid, J. C. Knight, G. Antonopoulos, et al., “Stimulated Raman scat-
tering in hydrogen-filled hollow-core photonic crystal fiber,” Science, 298,
399–402 (2002).
20. W. G. French, J. B. MacChesney, and A. D. Pearson, “Glass fibers for optical
communications,” Ann. Rev. Mat. Sci., 5, 373–394 (1975).
21. T. Miya, Y. Terunuma, T. Hosaka, et al., “Ultimate low-loss single-mode fiber
at 1.55 μm,” Electron. Lett., 15, 106–108 (1979).
22. R. L. Kozodoy, A. T. Pagkalinawan, and J. A. Harrington, “Small-bore hollow
waveguides for delivery of 3 μm laser radiation,” Appl. Opt., 35, 1077–1082
(1996).
23. B. J. Eggleton, P. S. Westbrook, C. A. White, et al., “Cladding-mode-resonances
in air-silica microstructure optical fibers,” J. Lightwave Technol., 18, 1084–1100
(2000).