Page 196 - Optofluidics Fundamentals, Devices, and Applications
P. 196
Optofluidic Photonic Crystal Fibers: Pr operties and Applications 171
50. F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, et al., “Optofluidic
tuning of photonic crystal band edge lasers,” Appl. Phys. Lett., 91, 223503
(2007).
51. P. J. Roberts, F. Couny, H. Sabert, et al., “Ultimate low loss of hollow-core
photonic crystal fibers,” Opt. Express, 13, 236–244 (2005).
52. D. K. Sparacin, S. J. Spector., and L. C. Kimerling, “Silicon waveguide sidewall
smoothing by wet chemical oxidation,” J. Lightwave Technol., 23, 2455–2461
(2005).
53. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, et al., “Compact resonant
integrated microfluidic refractometer,” Appl. Phys. Lett., 88, 093513 (2006).
54. W. Liang, Y. Huang, Y. Xu, et al., “Highly sensitive fiber Bragg grating refrac-
tive index sensors,” Appl. Phys. Lett., 86, 151122 (2005).
55. A. Iadicicco, S. Campopiano, A. Cutolo, et al., “Refractive index sensor
based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett.,
17, 1250–1252 (2005).
56. Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured
optical fibers through a selective-filling technique,” Appl. Phys. Lett., 85,
5182–5184 (2004).
57. K. Nielsen, D. Noordegraaf, T. Sørensen, et al., “Selective filling of photonic
crystal fibers,” J. Opt., A 7, L13–L20 (2005).
58. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core micro-
structured polymer optical fiber,” Opt. Express, 14, 4135–4140 (2006).
59. N. M. Litchinitser, S. C. Dunn, B. Usner, et al., “Resonances in microstructured
optical waveguides,” Opt. Express, 11, 1243–1251 (2003).
60. A. Fuerbach, P. Steinvurzel, J. A. Bolger, et al., “Nonlinear pulse propagation
at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt.
Express, 13, 2977–2987 (2005).
61. P. Steinvurzel, E. D. Moore, E. C. Mägi,et al., “Tuning properties of long period
gratings in photonic bandgap fibers,” Opt. Lett., 31, 2103–2105 (2006).
62. B. R. Acharya, T. Krupenkin, S. Ramachandran, et al., “Tunable optical fiber
devices based on broadband long-period gratings and pumped microfluidics.”
Appl. Phys. Lett., 83, 4912–4914 (2003).
63. F. Cattaneo, K. Baldwin, S. Yang, et al., “Digitally tunable microfluidic optical
fiber devices,” J. Microelectromech. Syst., 12, 907–912 (2003).
64. D. G. Bailey, J. Malcolm, O. Arnold, et al., “Grapefruit juice-drug interac-
tions,” Br. J. Clin. Pharmacol., 46, 101–110 (1998).
65. C. Kerbage, P. Steinvurzel, P. Reyes, et al., “Highly tunable birefringent micro-
structured optical fiber,” Opt. Lett., 27, 842–844 (2002).
66. C. Kerbage, M. Sumetsky, and B. J. Eggleton, “Polarisation tuning by micro-
fluidic motion in air-silica microstructured optical fiber,” Electron. Lett., 38,
1015–1017 (2002).
67. P. Mach, M. Dolinski, K. W. Baldwin, et al., “Tunable microfluidic optical
fiber,” Appl. Phys. Lett., 80, 4294–4296 (2002).
68. C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,”
Appl. Phys. Lett., 82, 1338–1340 (2003).
69. H. C. Nguyen, P. Domachuk, B. J. Eggleton, et al., “New slant on photonic
crystal fibers,” Opt. Express, 12, 1528–1539 (2004).
70. P. Domachuk, H. C. Nguyen, and B. J. Eggleton, “Transverse probed micro-
fluidic switchable photonic crystal fiber devices,” IEEE Photon. Technol. Lett.,
16, 1900–1902 (2004).
71. J. D Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding
the Flow of Light, Princeton University Press, Princeton, NJ (1995).
72. M. J. Steel, BandSOLVE User Guide 2d ed., RSoft Design, Inc., Ossining (2005).
73. T. R. Salamon, J. A. Rogers, and B. J. Eggleton, “Analysis of heat flow in opti-
cal fiber devices that use microfabricated thin film heaters,” Sens. Actuators,
A 95, 8–16 (2001).
74. P. Domachuk, C. Grillet, V. Ta’eed, et al., “Microfluidic interferometer,” Appl.
Phys. Lett., 86, 024103 (2005).
75. C. Grillet, P. Domachuk, V. Ta’eed, et al., “Compact tunable microfluidic inter-
ferometer,” Opt. Express, 12, 5440–5447 (2004).