Page 199 - Optofluidics Fundamentals, Devices, and Applications
P. 199
174 Cha pte r Se v e n
123. J. Jasapara, T. H. Her, R. T. Bise, et al., “Group-velocity dispersion measure-
ments in a photonic bandgap fiber,” J. Opt. Soc. Am., B 20, 1611–1615 (2003).
124. R. T. Bise, J. Jasapara, P. Steinvurzel, et al., “Temperature tuning of dispersion
in a photonic band gap fiber,” Conf. Lasers Electro-Opt./Quantum Electron. Laser
Sci. (CLEO/QELS), paper JThA1, Long Beach (2002).
125. J. Lægsgaard and A. Bjarklev, “Doped photonic bandgap fibers for short-
wavelength nonlinear devices,” Opt. Lett., 28, 783–785 (2003).
126. J. Riishede, J. Lægsgaard, J. Broeng, et al., “All-silica photonic bandgap fiber
with zero dispersion and a large mode area at 730 nm,” J. Opt., A 6, 667–670
(2004).
127. A. Fuerbach, P. Steinvurzel, J. A. Bolger, et al., “Nonlinear propagation effects
in anti-resonant high-index inclusion photonic crystal fibers,” Opt. Lett., 30,
830–832 (2005).
128. G. P. Agrawal, Nonlinear Fiber Optics, 2d ed., Academic Press, San Diego
(1995).
129. P. K. A. Wai, C. R. Menyuk, H. H. Chen, et al., “Soliton at the zero-group-dis-
persion wavelength of a single model fiber,” Opt. Lett., 12, 628–630 (1987).
130. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons
in optical fibers,” Phys. Rev., A 51, 2602–2607 (1995).
131. P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing
in solid core photonic bandgap fibers,” Opt. Express, 16, 4059–4068 (2008).
132. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core pho-
tonic crystal fiber for supercontinuum generation,” Opt. Express, 14, 6800–
6812 (2006).
133. K. A. Brzda ˛kiewicz, U. A. Laudyn, M. A. Karpierz, et al., “Linear and nonlin-
ear properties of photonic crystal fibers filled with nematic liquid crystals,”
Opto-Electron. Rev., 14, 287–292 (2006).
134. C. R. Rosberg, F. H. Bennet, D. N. Neshev, et al., “Tunable diffraction and
self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express, 15,
12145–12150 (2007).
135. P. D. Rasmussen, A. A. Sukhorukov, D. N. Neshev, et al., “Spatiotemporal
control of light by Bloch-mode dispersion in multicore fibers,” Opt. Express,
16, 5878–5891 (2008).
136. X. Fan, I. M. White, S. I. Shopova, et al., “Sensitive optical biosensors for
unlabeled targets: A review” Analytica Chimica Acta., 620, 8–26 (2008).
137. A. Bétourné, Y. Quiquempois, G. Bouwmans, et al., “Design of a photonic
crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express,
16, 14255–14262 (2008).
138. M. R. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multiorder dispersion
engineering for optimal four-wave mixing,” Opt. Express, 16, 7551–7563
(2008).
139. D. R. Austin, C. M. de Sterke, B. J. Eggleton, et al., “Dispersive wave blue-shift
in supercontinuum generation,” Opt. Express, 14, 11997–12007 (2006).
140. J. M. Stone and J. C. Knight, “Visibly white light generation in uniform
photonic crystal fiber using a microchip laser,” Opt. Express, 16, 2670–2675
(2008).
141. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum
generation in cascaded holey fibers,” Opt. Lett., 30, 3132–3134 (2005).
142. D. R. Solli, C. Ropers, P. Koonath, et al., “Optical rogue waves,” Nature, 450,
1054–1057 (2007).
143. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of opti-
cal rogue waves in supercontinuum generation,” Opt. Express, 16, 3644–3651
(2008).
144. A. Ferrando, E. Silvestre, J. J. Miret, et al., “Nearly zero ultraflattened disper-
sion in photonic crystal fibers,” Opt. Lett., 25, 790–792 (2000).
145. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with
microstructured optical fibers: ultraflattened chromatic dispersion with low
losses,” Opt. Lett., 28(12) 989–991 (2003).