Page 200 - Optofluidics Fundamentals, Devices, and Applications
P. 200
Optofluidic Photonic Crystal Fibers: Pr operties and Applications 175
146. W. H. Reeves, J. C. Knight, P. St. J. Russell, et al., “Demonstration of ultra-
flattened dispersion in photonic crystal fibers,” Opt. Express, 10, 609–613
(2002).
147. P. J. Roberts, B. J. Mangan, H. Sabert, et al., “Control of dispersion in photonic
crystal fibers” J. Opt. Fiber Commun. Rep., 2, 435–461 (2005).
148. F. Gérôme, J. -L. Auguste, and J. -M. Blondy, “Design of dispersion-compen-
sating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett.,
29, 2725–2727 (2004).
149. K. M. Gundu, M. Kolesik, J. V. Moloney, et al., “Ultraflattened-dispersion
selectively liquid-filled photonic crystal fibers,” Opt. Express, 14, 6870–6878
(2006).
150. T. Kuhlmey, H. C. Nguyen, M. J. Steel, et al., “Confinement loss in adiabatic
photonic crystal fiber tapers,” J. Opt. Soc. Am., B 23, 1965–1974 (2006).
151. R. Goto, K. Takenaga, K. Okada, et al., “Cladding-pumped Yb-doped solid
photonic bandgap fiber for ase suppression in shorter wavelength region,”
Opt. Fiber Comm. Conf. (OFC), paper OTuJ5, San Diego (2008).
152. V. S. Shchesnovich, A. S. Desyatnikov, and Yu. S. Kivshar, “Interband reso-
nant transitions in two-dimensional hexagonal lattices: Rabi oscillations,
Zener tunnelling, and tunnelling of phase dislocations,” Opt. Express, 16,
14076–14094 (2008).
153. T. Ritari, J. Tuominen, H. Ludvigsen, et al., “Gas sensing using air-guiding
photonic bandgap Fibers,” Opt. Express, 12, 4080–4087 (2004).
154. V. P. Minkovich, D. Monzón-Hernández, Joel Villatoro, et al., “Microstructured
optical fiber coated with thin films for gas and chemical sensing,” Opt. Express,
14, 8413–8418 (2006).
155. F. Benabid, F. Couny, J. C. Knight, et al., “Compact, stable and efficient all-
fiber gas cells using hollow-core photonic crystal fibers,” Nature, 434, 488–491
(2005).
156. F. Couny, F. Benabid, P. J. Roberts, et al., “Generation and photonic guidance
of multioctave optical-frequency combs,” Science, 318, 1118–1121 (2007).
157. F. Benabid, P. S. Light, F. Couny, et al., “Electromagnetically-induced
transparency grid in acetylene-filled hollow-core PCF,” Opt. Express, 13,
5694–5703 (2005).
158. X. E. Lin, “Photonic band gap fiber accelerator,” Phys. Rev. Special Topics, 4,
051301 (2001).
159. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core
photonic band-gap fiber,” Phys. Rev. Lett., 98, 210404 (2007).
160. A. Ozcan and U. Demirci, “Rewritable self-assembled long-period gratings
in photonic bandgap fibers using microparticles,” Opt. Comm., 270, 225–228
(2007).
161. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors:
review,” Sens. Actuators, B 54, 3–15 (1999).
162. C. L. Haynes, C. R. Yonzon, X. Zhang, et al., “Surface-enhanced Raman sen-
sors: early history and the development of sensors for quantitative biowarfare
agent and glucose detection,” J. Raman Spectrosc., 36, 471–484 (2005).
163. A. M. Armani, R. P. Kulkarni, S. E. Fraser, et al., “Label-free, single-molecule
detection with optical microcavities,” Science, 317, 783–787 (2007).
164. E. P. Schartner, Y. Ruan, P. Hoffmann, et al., “An optical fiber protein sensor,”
Australian Conf. Opt. Fiber Technol. (ACOFT), paper WeB1–3, Melbourne
(2007).
165. L. Rindorf, J. B. Jensen, M. Dufva, et al., “Photonic crystal fiber long-period
gratings for biochemical sensing,” Opt. Express, 14, 8224–8231 (2006).
166. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors:
biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc.
Am., B 25, 310–324 (2008).
167. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analy-
sis of photonic crystal fibers with coated inclusions,” Opt. Express, 14, 10851–
10864. (2006).