Page 198 - Optofluidics Fundamentals, Devices, and Applications
P. 198
Optofluidic Photonic Crystal Fibers: Pr operties and Applications 173
101. P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, et al., “Continuously tunable
bandpass filtering using high-index inclusion microstructured optical fiber,”
Electron. Lett., 41, 463–464 (2005).
102. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian fillter based on
tapered liquid crystal photonic bandgap fiber,” Electron. Lett,. 42, 1270–1271
(2006).
103. J. -B. Du, Y. -G. Liu, Z. Wang, et al., “Thermally tunable dual-core photonic
bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt.
Express, 16, 4263–4269 (2008).
104. T. T. Larsen, A. Bjarklev, D. S. Hermann, et al., “Optical devices based
on liquid crystal photonic bandgap fibers,” Opt. Express, 11, 2589–2596
(2003).
105. T. T. Larsen, J. Broeng, D. S. Hermann, et al., “Thermo-optic switching in
liquid crystal infiltrated photonic bandgap fibers,” Electron. Lett., 39, 1719–1720
(2003).
106. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, et al., “All-optical modulation in
dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express, 12,
5857–5871 (2004).
107. J. Li, S. Gauza, S. T. Wu, et al., “High dn /dT liquid crystals and their applica-
o
tions in a thermally tunable liquid crystal photonic crystal fiber,” Molecular
Cryst. Liq. Cryst., 453, 355–370 (2006).
108. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, et al., “Highly tunable large-core
single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt., 45, 2261–2264
(2006).
109. T. R. Woli ski, K. Szaniawska, S. Ertman, et al., “Influence of temperature and
electrical fields on propagation properties of photonic liquid-crystal fibers,”
Meas. Sci. Technol., 17, 985–991 (2006).
110. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, et al., “Electrically tunable
photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,”
IEEE Photon. Technol. Lett., 17, 819–821 (2005).
111. L. Scolari, T. T. Alkeskjold, J. Riishede, et al., “Continuously tunable devices
based on electrical control of dual-frequency liquid crystal filled photonic
bandgap fibers,” Opt. Express, 13, 7483–7496 (2005).
112. V. K. Hsiao and C. -Y. Ko, “Light-controllable photoresponsive liquid-crystal
photonic crystal fiber,” Opt. Express, 16, 12670–12676 (2008).
113. P. Steinvurzel, E. D. Moore, E. C. Mägi, et al., “Long period grating resonances
in photonic bandgap fiber,” Opt. Express, 14, 3007–3014 (2006).
114. D. Noordegraaf, L. Scolari, J. Lægsgaard, et al., “Electrically and mechanically
induced long period gratings in liquid crystal photonic bandgap fibers,” Opt.
Express, 15, 7901–7912 (2007).
115. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long
period gratings in fluid-filled photonic bandgap fiber,” Electron. Lett., 42,
739–740 (2006).
116. D. -I. Yeom, P. Steinvurzel, B. J. Eggleton, et al., “Tunable acoustic gratings in
solid-core photonic bandgap fiber,” Opt. Express, 15, 3513–3518 (2007).
117. B. T. Kuhlmey, F. Luan, L. B. Fu, et al., “Experimental reconstruction of bands
in solid core photonic bandgap fibers using acoustic gratings,” Opt. Express,
16, 13845–13856 (2008).
118. P. Steinvurzel, E. D. Moore, E. C. Mägi, et al., “Tuning properties of long period
gratings in photonic bandgap fibers,” Opt. Lett., 31, 2103–2105 (2006).
119. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period
fiber gratings,” J. Lightwave Technol., 20, 255–266 (2002).
120. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in
a two-mode fiber,” Opt. Lett., 20, 1247–1249 (1995).
121. D. I. Yeom, H. S. Kim, M. S. Kang, et al., “Narrow-bandwidth all-fiber acous-
tooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol.
Lett., 17, 2646–2648 (2005).
122. M. W. Haakestad and J. Skaar, “Causality and Kramers-Kronig relations for
waveguides,” Opt. Express, 13, 9922–9934 (2005).