Page 198 - Optofluidics Fundamentals, Devices, and Applications
P. 198

Optofluidic Photonic Crystal Fibers: Pr operties and Applications   173


               101.  P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, et al., “Continuously tunable
                   bandpass filtering using high-index inclusion microstructured optical fiber,”
                   Electron. Lett., 41, 463–464 (2005).
               102.  L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian fillter based on
                   tapered liquid crystal photonic bandgap fiber,” Electron. Lett,. 42, 1270–1271
                   (2006).
               103.  J. -B. Du, Y. -G. Liu, Z. Wang, et al., “Thermally tunable dual-core photonic
                   bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt.
                   Express, 16, 4263–4269 (2008).
               104.  T. T. Larsen, A. Bjarklev, D. S. Hermann, et al., “Optical devices based
                   on liquid crystal photonic bandgap fibers,” Opt. Express, 11, 2589–2596
                   (2003).
               105. T. T. Larsen, J. Broeng, D. S. Hermann, et al., “Thermo-optic switching in
                   liquid crystal infiltrated photonic bandgap fibers,” Electron. Lett., 39, 1719–1720
                   (2003).
               106.  T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, et al., “All-optical modulation in
                   dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express, 12,
                   5857–5871 (2004).
               107.  J. Li, S. Gauza, S. T. Wu, et al., “High dn /dT liquid crystals and their applica-
                                              o
                   tions in a thermally tunable liquid crystal photonic crystal fiber,” Molecular
                   Cryst. Liq. Cryst., 453, 355–370 (2006).
               108.  T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, et al., “Highly tunable large-core
                   single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt., 45, 2261–2264
                   (2006).
               109.  T. R. Woli ski, K. Szaniawska, S. Ertman, et al., “Influence of temperature and
                   electrical fields on propagation properties of photonic liquid-crystal fibers,”
                   Meas. Sci. Technol., 17, 985–991 (2006).
               110.  M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, et al., “Electrically tunable
                   photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,”
                   IEEE Photon. Technol. Lett., 17, 819–821 (2005).
               111.  L. Scolari, T. T. Alkeskjold, J. Riishede, et al., “Continuously tunable devices
                   based on electrical control of dual-frequency liquid crystal filled photonic
                   bandgap fibers,” Opt. Express, 13, 7483–7496 (2005).
               112.  V. K. Hsiao and C. -Y. Ko, “Light-controllable photoresponsive liquid-crystal
                   photonic crystal fiber,” Opt. Express, 16, 12670–12676 (2008).
               113.  P. Steinvurzel, E. D. Moore, E. C. Mägi, et al., “Long period grating resonances
                   in photonic bandgap fiber,” Opt. Express, 14, 3007–3014 (2006).
               114.  D. Noordegraaf, L. Scolari, J. Lægsgaard, et al., “Electrically and mechanically
                   induced long period gratings in liquid crystal photonic bandgap fibers,” Opt.
                   Express, 15, 7901–7912 (2007).
               115.  T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long
                   period gratings in fluid-filled photonic bandgap fiber,” Electron. Lett., 42,
                   739–740 (2006).
               116.  D. -I. Yeom, P. Steinvurzel, B. J. Eggleton, et al., “Tunable acoustic gratings in
                   solid-core photonic bandgap fiber,” Opt. Express, 15, 3513–3518 (2007).
               117.  B. T. Kuhlmey, F. Luan, L. B. Fu, et al., “Experimental reconstruction of bands
                   in solid core photonic bandgap fibers using acoustic gratings,” Opt. Express,
                   16, 13845–13856 (2008).
               118. P. Steinvurzel, E. D. Moore, E. C. Mägi, et al., “Tuning properties of long period
                   gratings in photonic bandgap fibers,” Opt. Lett., 31, 2103–2105 (2006).
               119.  X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period
                   fiber gratings,” J. Lightwave Technol., 20, 255–266 (2002).
               120.  D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in
                   a two-mode fiber,” Opt. Lett., 20, 1247–1249 (1995).
               121.  D. I. Yeom, H. S. Kim, M. S. Kang, et al., “Narrow-bandwidth all-fiber acous-
                   tooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol.
                   Lett., 17, 2646–2648 (2005).
               122.  M. W. Haakestad and J. Skaar, “Causality and Kramers-Kronig relations for
                   waveguides,” Opt. Express, 13, 9922–9934 (2005).
   193   194   195   196   197   198   199   200   201   202   203