Page 195 - Optofluidics Fundamentals, Devices, and Applications
P. 195
170 Cha pte r Se v e n
24. D. G. Ouzounov, F. R. Ahmad, D. Muller, et al., “Generation of megawatt opti-
cal solitons in hollow-core photonic band-gap fibers,” Science, 301, 1702–1704
(2003).
25. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic
crystal fiber,” Rev. Mod. Phys., 78, 1135–1184 (2006).
26. P. St. J Russell, “Photonic-crystal fibers,” J. Lightwave Technol., 24, 12 (2006).
27. W. H. Reeves, D. V. Skryabin, F. Biancalana, et al., “Transformation and con-
trol of ultrashort pulses in dispersion-engineered photonic crystal fibers,”
Nature, 424, 511–515 (2003).
28. J. G. Rarity, J. Fulconis, J. Duligall, et al., “Photonic crystal fiber source of
correlated photon pairs,” Opt. Express, 13, 534–44 (2005).
29. J. C. Knight, J. Arriaga, T. A. Birks, et al., “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol. Lett., 12, 807–809 (2000).
30. J. Broeng, D. Mogilevstev, S. E. Barkou, et al., “Photonic crystal fibers: A new
class of optical waveguides,” Opt. Fiber Technol., 5, 305–330 (1999).
31. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol., 10,
432–438 (1992).
32. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, et al., “Tapered photonic crys-
tal fibers: properties, characterisation and applications,” Appl. Phys., B 81,
377–387 (2005).
33. M. Sumetsky, Y. Dulashko, P. Domachuk, et al., “Thinnest optical waveguide:
experimental test,” Opt. Lett., 32, 754–756 (2007).
34. L. M. Tong, L. L. Hu, J. J. Zhang, et al., “Photonic nanowires directly drawn
from bulk glasses,” Opt. Express, 14, 82–87 (2006).
35. P. Domachuk, A. Chapman, E. Mägi, et al., “Transverse characterization of
high air-fill fraction tapered photonic crystal fiber,” Appl. Opt., 44, 3885–3892
(2005).
36. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, 4309–4341 (1997).
37. K. O. Hill, Y. Fujii, D.C. Johnson, et al., “Photosensitivity in optical fiber
waveguides: Applications to reflection filter fabrication,” Appl. Phys. Lett.,
32, 647–649 (1978).
38. T. Erdogan., “Fiber grating spectra,” J. Lightwave Technol., 15, 1277–1294
(1997).
39. Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol., 8, 355–375
(1997).
40. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter
scale,” Rev. Mod. Phys., 77, 977–1026 (2005).
41. G. M. Whitesides, “The origins and the future of microfluidics,” Nature, 442,
368–373 (2006).
42. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices:
Microfluidics toward a lab-on-a-chip,” Ann. Rev. Fluid Mech., 36, 381–411
(2004).
43. J. Hecht, City of Light: The Story of Fiber Optics., Oxford University Press, New
York (1999).
44. C. Monat, P. Domachuk, C. Grillet, et al., “Optofluidics: a novel generation
of reconfigurable and adaptive compact architectures,” Microfluidics and
Nanofluidics, 4, 81–95 (2008).
45. S. H. Kim, J. H. Choi, S. K. Lee, et al., “Optofluidic integration of a photonic
crystal nanolaser,” Opt. Express, 16, 6515–6527 (2008).
46. H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,”
Microfluid. Nanofluidics, 4, 53–79 (2008).
47. X. Heng, D. Erickson, L. R. Baugh, et al., “Optofluidic microscopy—a method
for implementing a high resolution optical microscope on a chip,” Lab. Chip.,
6, 1274–1276 (2006).
48. Z. Y. Li, Z. Y. Zhang, T. Emery, et al., “Single mode optofluidic distributed
feedback dye laser,” Opt. Express, 14, 696–701 (2006).
49. C. Peroz, J. C. Galas, L. Le Gratiet, et al., “Compact dye laser on a chip fab-
ricated by ultraviolet nanoimprint lithography,” Appl. Phys. Lett., 89, 243109
(2006).