Page 195 - Optofluidics Fundamentals, Devices, and Applications
P. 195

170     Cha pte r  Se v e n


                 24.  D. G. Ouzounov, F. R. Ahmad, D. Muller, et al., “Generation of megawatt opti-
                   cal solitons in hollow-core photonic band-gap fibers,” Science, 301, 1702–1704
                   (2003).
                 25.  J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic
                   crystal fiber,” Rev. Mod. Phys., 78, 1135–1184 (2006).
                 26.  P. St. J Russell, “Photonic-crystal fibers,” J. Lightwave Technol., 24, 12 (2006).
                 27.  W. H. Reeves, D. V. Skryabin, F. Biancalana, et al., “Transformation and con-
                   trol of ultrashort pulses in dispersion-engineered photonic crystal fibers,”
                   Nature, 424, 511–515 (2003).
                 28.  J. G. Rarity, J. Fulconis, J. Duligall, et al., “Photonic crystal fiber source of
                   correlated photon pairs,” Opt. Express, 13, 534–44 (2005).
                 29.  J. C. Knight, J. Arriaga, T. A. Birks, et al., “Anomalous dispersion in photonic
                   crystal fiber,” IEEE Photon. Technol. Lett., 12, 807–809 (2000).
                 30.  J. Broeng, D. Mogilevstev, S. E. Barkou, et al., “Photonic crystal fibers: A new
                   class of optical waveguides,” Opt. Fiber Technol., 5, 305–330 (1999).
                 31.  T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol., 10,
                   432–438 (1992).
                 32.  H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, et al., “Tapered photonic crys-
                   tal fibers: properties, characterisation and applications,” Appl. Phys., B 81,
                   377–387 (2005).
                 33.  M. Sumetsky, Y. Dulashko, P. Domachuk, et al., “Thinnest optical waveguide:
                   experimental test,” Opt. Lett., 32, 754–756 (2007).
                 34.  L. M. Tong, L. L. Hu, J. J. Zhang, et al., “Photonic nanowires directly drawn
                   from bulk glasses,” Opt. Express, 14, 82–87 (2006).
                 35.  P. Domachuk, A. Chapman, E. Mägi, et al., “Transverse characterization of
                   high air-fill fraction tapered photonic crystal fiber,” Appl. Opt., 44, 3885–3892
                   (2005).
                 36.  A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, 4309–4341 (1997).
                 37.  K. O. Hill, Y. Fujii, D.C. Johnson, et al., “Photosensitivity in optical fiber
                   waveguides: Applications to reflection filter fabrication,” Appl. Phys. Lett.,
                   32, 647–649 (1978).
                38.  T. Erdogan., “Fiber grating spectra,” J. Lightwave Technol., 15, 1277–1294
                   (1997).
                39.  Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol., 8, 355–375
                   (1997).
                 40.  T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter
                   scale,” Rev. Mod. Phys., 77, 977–1026 (2005).
                 41.  G. M. Whitesides, “The origins and the future of microfluidics,” Nature, 442,
                   368–373 (2006).
                 42.  H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices:
                   Microfluidics toward a lab-on-a-chip,” Ann. Rev. Fluid Mech., 36, 381–411
                   (2004).
                43.  J. Hecht, City of Light: The Story of Fiber Optics., Oxford University Press, New
                   York (1999).
                 44.  C. Monat, P. Domachuk, C. Grillet, et al., “Optofluidics: a novel generation
                   of reconfigurable and adaptive compact architectures,” Microfluidics and
                   Nanofluidics, 4, 81–95 (2008).
                 45.  S. H. Kim, J. H. Choi, S. K. Lee, et al., “Optofluidic integration of a photonic
                   crystal nanolaser,” Opt. Express, 16, 6515–6527 (2008).
                 46.  H. C. Hunt and J. S. Wilkinson, “Optofluidic integration for microanalysis,”
                   Microfluid. Nanofluidics, 4, 53–79 (2008).
                 47.  X. Heng, D. Erickson, L. R. Baugh, et al., “Optofluidic microscopy—a method
                   for implementing a high resolution optical microscope on a chip,” Lab. Chip.,
                   6, 1274–1276 (2006).
                 48.  Z. Y. Li, Z. Y. Zhang, T. Emery, et al., “Single mode optofluidic distributed
                   feedback dye laser,” Opt. Express, 14, 696–701 (2006).
                 49.  C. Peroz, J. C. Galas, L. Le Gratiet, et al., “Compact dye laser on a chip fab-
                   ricated by ultraviolet nanoimprint lithography,” Appl. Phys. Lett., 89, 243109
                   (2006).
   190   191   192   193   194   195   196   197   198   199   200