Page 197 - Optofluidics Fundamentals, Devices, and Applications
P. 197
172 Cha pte r Se v e n
76. J. Cooper-White and L. E Rodd, Silanization Methods for Glass, Univeristy
of Queensland, Brisbane (2005).
77. P. St. J. Russell, “Photonic crystal fibers,” Science, 299, 358–362 (2003).
78. M. Yan and P. Shum, “Guidance varieties in photonic crystal fibers,” J. Opt.
Soc. Am., B 23, 1684–1691 (2006).
79. J. C. Flanagan, R. Amezcua-Correa, F. Poletti, et al., “Parasitic modes in large
mode area microstructured fibers,” Opt. Fiber Comm. Conf. (OFC), paper
OML4, Anaheim, (2007).
80. G. Antonopoulos, F. Benabid, T. A. Birks, et al., “Experimental demonstration
of the frequency shift of bandgaps in photonic crystal fibers due to refractive
index scaling,” Opt. Express, 14, 3000–3006 (2006).
81. S. Lebrun, P. Delaye, R. Frey, et al., “High-efficiency single-mode Raman gener-
ation in a liquid-filled photonic bandgap fiber,” Opt. Lett., 32, 337–339 (2007).
82. J. Sun, C.-C. Chan, X.-Y. Dong, et al., “High-resolution photonic bandgap
fiber-based biochemical sensor,” J. Biomed. Opt., 12, 044022 (2007).
83. L. Xiao, W. Jin, M. Demokan, et al., “Fabrication of selective injection micro-
structured optical fibers with a conventional fusion splicer,” Opt. Express, 13,
9014–9022 (2005).
84. C. M. B. Cordeiro, E. M. dos Santos, C. H. B. Cruz, et al., “Lateral access to the
holes of photonic crystal fibers—selective filling and sensing applications,”
Opt. Express, 14, 8403–8412 (2006).
85. C. Martelli, J. Canning, K. Lyytikainen, et al., “Water-core Fresnel fiber,” Opt.
Express, 13, 3890–3895 (2005).
86. S. Yiou, P. Delaye, A. Rouvie, et al., “Stimulated Raman scattering in an etha-
nol core microstructured optical fiber,” Opt. Express, 13, 4786–4791 (2005).
87. C. J. De Matos, C. M. B. Cordeiro, E. M. dos Santos, et al., “Liquid-core, liquid-
cladding photonic crystal fibers,” Opt. Express, 15, 11207–11212 (2007).
88. Y. Zhang, C. Shi, C. Gu, et al., “Liquid core photonic crystal fiber sensor based
on surface enhanced Raman scattering,” Appl. Phys. Lett., 90, 193504 (2007).
89. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sens-
ing with hollow core photonic crystal fibers,” Opt. Express, 15, 12783–12791
(2008).
90. A. Bozolan, C. J. de Matos, C. M. B. Cordeiro, et al., “Supercontinuum gen-
eration in a water-core photonic crystal fiber,” Opt. Express, 16, 9671–9676
(2008).
91. N. M. Litchinitser, A. K. Abeeluck, C. Headley, et al., “Antiresonant reflecting
photonic crystal optical waveguides,” Opt. Lett., 27, 1592–1594 (2002).
92. T. P. White, R. C. McPhedran, C. M. de Sterke, et al., “Resonance and scatter-
ing in microstructured optical fibers,” Opt. Lett., 27, 1977–1979 (2002).
93. P. Steinvurzel, B. T. Kuhlmey, T. P. White, et al., “Long wavelength anti-
resonant guidance in high index inclusion microstructured fibers,” Opt.
Express, 12, 5424–5433 (2004).
94. P. Steinvurzel, C. M. de Sterke, M. J. Steel, et al., “Single scatterer Fano reso-
nances in solid core photonic bandgap fibers,” Opt. Express, 14, 8797–8811
(2006).
95. F. Couny, F. Benabid, P. J. Roberts, et al., “Identification of Bloch-modes
in hollow-core photonic crystal fiber cladding,”Opt. Express, 15, 325–338
(2007).
96. J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibers
with high-index rods,” J. Opt., A 6, 798–804 (2004).
97. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calcula-
tion for photonic bandgap fibers,” Opt. Express, 14, 9483–9490 (2006).
98. N. M. Litchinitser, S. C. Dunn, P. Steinvurzel, et al., “Application of an
ARROW model for designing tunable photonic devices,” Opt. Express, 12,
1540–1550 (2004).
99. N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured
optical fibers for sensing applications,” Appl. Phys., B 81, 347–351 (2005).
100. R. T. Bise, R. S. Windeler, K. S. Kranz, et al., “Tunable photonic band gap
fiber,” Opt. Fiber Comm. Conf. (OFC), paper ThK3, Anaheim, (2002).