Page 197 - Optofluidics Fundamentals, Devices, and Applications
P. 197

172    Cha pte r  Se v e n


                 76.  J. Cooper-White and L. E Rodd, Silanization Methods for Glass, Univeristy
                   of Queensland, Brisbane (2005).
                 77.  P. St. J. Russell, “Photonic crystal fibers,” Science, 299, 358–362 (2003).
                 78.  M. Yan and P. Shum, “Guidance varieties in photonic crystal fibers,” J. Opt.
                   Soc. Am., B 23, 1684–1691 (2006).
                 79.  J. C. Flanagan, R. Amezcua-Correa, F. Poletti, et al., “Parasitic modes in large
                   mode area microstructured fibers,” Opt. Fiber Comm. Conf. (OFC), paper
                   OML4, Anaheim, (2007).
                 80.  G. Antonopoulos, F. Benabid, T. A. Birks, et al., “Experimental demonstration
                   of the frequency shift of bandgaps in photonic crystal fibers due to refractive
                   index scaling,” Opt. Express, 14, 3000–3006 (2006).
                 81.  S. Lebrun, P. Delaye, R. Frey, et al., “High-efficiency single-mode Raman gener-
                   ation in a liquid-filled photonic bandgap fiber,” Opt. Lett., 32, 337–339 (2007).
                 82.  J. Sun, C.-C. Chan, X.-Y. Dong, et al., “High-resolution photonic bandgap
                   fiber-based biochemical sensor,” J. Biomed. Opt., 12, 044022 (2007).
                 83.  L. Xiao, W. Jin, M. Demokan, et al., “Fabrication of selective injection micro-
                   structured optical fibers with a conventional fusion splicer,” Opt. Express, 13,
                   9014–9022 (2005).
                 84.  C. M. B. Cordeiro, E. M. dos Santos, C. H. B. Cruz, et al., “Lateral access to the
                   holes of photonic crystal fibers—selective filling and sensing applications,”
                   Opt. Express, 14, 8403–8412 (2006).
                 85.  C. Martelli, J. Canning, K. Lyytikainen, et al., “Water-core Fresnel fiber,” Opt.
                   Express, 13, 3890–3895 (2005).
                 86.  S. Yiou, P. Delaye, A. Rouvie, et al., “Stimulated Raman scattering in an etha-
                   nol core microstructured optical fiber,” Opt. Express, 13, 4786–4791 (2005).
                 87.  C. J. De Matos, C. M. B. Cordeiro, E. M. dos Santos, et al., “Liquid-core, liquid-
                   cladding photonic crystal fibers,” Opt. Express, 15, 11207–11212 (2007).
                 88.  Y. Zhang, C. Shi, C. Gu, et al., “Liquid core photonic crystal fiber sensor based
                   on surface enhanced Raman scattering,” Appl. Phys. Lett., 90, 193504 (2007).
                 89.  S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sens-
                   ing with hollow core photonic crystal fibers,” Opt. Express, 15, 12783–12791
                   (2008).
                 90.  A. Bozolan, C. J. de Matos, C. M. B. Cordeiro, et al., “Supercontinuum gen-
                   eration in a water-core photonic crystal fiber,” Opt. Express, 16, 9671–9676
                   (2008).
                 91.  N. M. Litchinitser, A. K. Abeeluck, C. Headley, et al., “Antiresonant reflecting
                   photonic crystal optical waveguides,” Opt. Lett., 27, 1592–1594 (2002).
                 92.  T. P. White, R. C. McPhedran, C. M. de Sterke, et al., “Resonance and scatter-
                   ing in microstructured optical fibers,” Opt. Lett., 27, 1977–1979 (2002).
                 93.  P. Steinvurzel, B. T. Kuhlmey, T. P. White, et al., “Long wavelength anti-
                   resonant guidance in high index inclusion microstructured fibers,” Opt.
                   Express, 12, 5424–5433 (2004).
                 94.  P. Steinvurzel, C. M. de Sterke, M. J. Steel, et al., “Single scatterer Fano reso-
                   nances in solid core photonic bandgap fibers,” Opt. Express, 14, 8797–8811
                   (2006).
                95.  F. Couny, F. Benabid, P. J. Roberts, et al., “Identification of Bloch-modes
                   in hollow-core photonic crystal fiber cladding,”Opt. Express, 15, 325–338
                   (2007).
                 96.  J. Lægsgaard, “Gap formation and guided modes in photonic bandgap fibers
                   with high-index rods,” J. Opt., A 6, 798–804 (2004).
                 97.  T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calcula-
                   tion for photonic bandgap fibers,” Opt. Express, 14, 9483–9490 (2006).
                98.  N.  M.  Litchinitser, S. C. Dunn, P. Steinvurzel, et al., “Application of an
                   ARROW model for designing tunable photonic devices,” Opt. Express, 12,
                   1540–1550 (2004).
                 99.  N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured
                   optical fibers for sensing applications,” Appl. Phys., B 81, 347–351 (2005).
               100.  R. T. Bise, R. S. Windeler, K. S. Kranz, et al., “Tunable photonic band gap
                   fiber,” Opt. Fiber Comm. Conf. (OFC), paper ThK3, Anaheim, (2002).
   192   193   194   195   196   197   198   199   200   201   202