Page 223 - Optofluidics Fundamentals, Devices, and Applications
P. 223
198 Cha pte r Ei g h t
101. R.L. Gordon, US Patent No. 1269422, June 11, 1918.
102. B.M. Wright, “Improvements in or relating to variable focus lenses,” English
patent 1209234, March 11,1968.
103. G.C. Knollman, J.L.S. Bellin, and J.L. Weaver, “Variable focus liquid filled
hydroacoustic lense,” J. Acoustical Soc. Am., 49 (1), 253, 1971.
104. T. Kaneko, T. Ohmi, N. Ohya, N. Kawahara, and T. Hattori, “A new, compact,
and quick-response dynamic focusing lens,” Proceedings of the 9th International
Conference on Solid-State Sensors and Actuators (Transducers’97), Chicago, 16–19
June 1997, 63–66.
105. Si-Hong-Ahn and Yong-Kweon Kim, “Proposal of human eye’s crys-
talline lens-like variable focusing lens,” Broadband Optical Networks and
Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics
and Optoelectronics, IEEE/LEOS Summer Topical Meetings, II/89–II/90, 20–24
July 1998.
106. Si-Hong-Ahn and Yong-Kweon Kim, “Proposal of human eye’s crystalline
lens-like variable focusing lens,” Sens. Actuators A, 78, 48–53, 1999.
107. Si-Hong-Ahn, Yong-Kweon Kim, “Design and fabrication of variable focusing
lens,” Proc. SPIE, 3515, 270, 1998.
108. M. Agarwal, R A Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-
based variable focal length microlens system,” J. Micromech. Microeng., 14,
2004, 1665–1673.
109. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz
bandwidth,” Opt. Express, 12, 2138–2149, 2004.
110. W. Wang, Ji Fang, and Kody Varahramyan, “Compact Variable-Focusing
Microlens With Integrated Thermal Actuator and Sensor,” IEEE Photon.
Technol. Lett., 17 (12), 2643–2645, 2005.
111. Kuang-Sheng Hong, JingWang, Alexey Sharonov, Dinesh Chandra, Joanna
Aizenberg, and Shu Yang, “Tunable microfluidic optical devices with an inte-
grated microlens array,” J. Micromech. Microeng., 16, 1660–1666, 2006.
112. D. Chandra, Shu Yang, and Pei-Chun Lin, “Strain responsive concave and
convex microlens arrays,” Appl. Phys. Lett., 91, 251912, 2007.
113. S.W. Lee and S.S. Lee, “Focal tunable liquid lens integrated with an electro-
magnetic actuator,” Appl. Phys. Lett., 90, 121129, 2007.
114. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl.
Opt., 32 (22), 4181–4186, 1993.
115. Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses for liquid zooming lenses
without moving parts,” Opt. Commun., 275 (1), 22–26, 1 July 2007.
116. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M.
Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer
lens,” Opt. Express, 16 (16), 11847–11857, 2008.
117. H. Feldman, “Nearly spherical acoustic lenses,” J. Acoust. Soc. Am., 45, 868,
1969.
118. Y. Tannaka and T. Koshikaw, “Solid-liquid compound hydroacoustic lens of
low aberration,” J. Acoust. Soc. Am., 53, 2, 590–595, 1973.
119. K. Campbell, U. Levy, Y. Fainman, and A. Groisman, “Pressure-driven devices
with lithographically fabricated composite epoxy-elastomer membranes,”
Appl. Phys. Lett., 89, 154105, 2006.
120. H.P. Herzig, “Micro-optics: elements, systems, and applications,” Refractive
Lenslet Array, ed. M.C. Hutley, 1997.
121. D. Daly, “Applications and fabrication technologies,” in Microlens Array,
Talyer and Francis, London, 2001.
122. D.L. MacFarlane, V. Narayan, J.A. Tatum, W.R. Cox, T. Chen, and D.J. Hayes,
“Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett., 6, 1112–
1114, September 1994.
123. P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borgh, “Mushroom
microlens: optimized microlenses by reflow of multiple layers of photoresist,”
IEEE Photon. Technol. Lett., 9, 1367–1369, October 1997.
124. P. Nussbaum, I. Philipoussis, A. Husser, and H.P. Herzig, “Simple technique
for replication of micro-optical elements,” Opt. Eng., 37, 1804–1808, 1998.