Page 221 - Optofluidics Fundamentals, Devices, and Applications
P. 221
196 Cha pte r Ei g h t
49. N.R. Smith, D. C. Abeysinghe, J.W. Haus, and J. Heikenfeld, “Agile wide-
angle beam steering with electrowetting microprisms,” Opt. Express, 14, (14),
6557–6563, 2006.
50. L. Truong, E.F. Borra, R. Bergamasco, N. Caron, P. Laird, and A. Ritcey,
“Nanoengineered liquid mirrors shaped by thermal fields,” Appl. Opt.,
44 (9), 2005.
51. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt.,
44 (16), 3238–3245, 2005.
52. E. Ventsel and T. Krauthammer, Thin Plates And Shells—Theory, Analysis and
Applications, Marcel Dekker, New York, 2001.
53. H. Mollmann, Introduction to the Theory of Thin Shells, John Willey and Sons,
New York, 1981.
54. A.A. Burrows and V.E. Hamilton, “Stereopsis using a large aspheric field
lens,” Appl. Opt., 13, 4, 1974.
55. V.E. Hamilton, A.H. Lanckton, “Stereopsis using a large liquid-filled aspheric field
lens stereoscope,” Photogrammetric Eng. and Remote Sensing, 39, 3, 294, 1973.
56. S.D. Poisson, Memoirs of the Academy, Vol. 8, Academy of Sciences, Paris,
1829.
57. L. Prandtl, “Zur Torsion von prismatischen Stäben,” Phys. Zeits., 4, 190, 1903.
58. J.P. Den Hartog , Advanced Strength of Materials, Courier Dover Publications,
1987, 11.
59. M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge (UK), Cambridge
University Press, 1999.
60. A.H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled
optical lens,” Appl. Opt., 35 (10), 1587–1589, 1996.
61. J.N. Reddy, Theory and Analysis of Elastic Plates, Taylor & Francis, 1996.
62. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl.
Phys., 18, 1679–1684, 1979.
63. D. W. Berreman, US Patent No. 4,190,330 1980.
64. S.T. Kowel, D.S. Cleverly, and P.G. Kornreich,”Focusing by electrical modula-
tion of refraction in a liquid crystal cell,” Appl. Opt., 23, 1984, 278.
65. A.F. Naumov, M.Y. Loktev, I.R. Guralnik, and G. Vdovin, “Liquid-crystal
adaptive lenses with modal control,” Opt. Lett., 23, 992–994, 1998.
66. L.G. Commander, S.E. Day, and D.R. Selviah, “Variable focal length
microlenses,”Opt. Commun., 177, 157–170, 2000.
67. von Waldkirch M, Lukowicz P, and Troster G, “Oscillating fluid lens in coher-
ent retinal projection displays for extending depth of focus,” Opt. Comm., 253
Issue: (4–6), 407–418, 2005.
68. Varioptic—The Liquid Lens Company, www.varioptic.com.
69. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two
orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt.
Express, 13, 9003–9013, 2005.
70. Y. Gambin, O. Legrand, and S.R. Quake, “Microfabricated rubber microscope
using soft solid immersion lenses,” Appl. Phys. Lett., 88, 174102, 2006.
71. K. Campbell, Y. Fainman, and Groisman A, “Pneumatically actuated adaptive
lenses with millisecond response time,” Appl. Phys. Lett., 91 (17), 171111, 2007.
72. P.S. Tsai, B. Migliori, K. Campbell, T.N. Kim, Z. Kam, A. Groisman, and D.
Kleinfeld, “Spherical aberration correction in nonlinear microscopy and opti-
cal ablation using a transparent deformable membrane,” Appl. Phys. Lett., 91,
191102, 2007.
73. F.S. Tsai, Sung Hwan Cho, Yu-Hwa Lo, B.Vasko, and J. Vasko, “Miniaturized
universal imaging device using fluidic lens,” Opt. Lett., 33 (3), 291–293, 2008.
74. S. Kuiper and B.H.W. Hendriks, “Variable-focus liquid lens for miniature
cameras,” Appl. Phys. Lett., 85, 1128 (2004).
75. B.H.W. Hendriks, S. Kuiper, M.A.J. Van As, C.A. Renders, and T.W. Tukker,
“Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev.,
12, 3, 255–259, 2005.
76. B.A. Flusberg, E.D. Cocker, W. Piyawattanametha, J.C. Jung, E.L.M. Cheung,
and M.J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods, 2, 941–
950, 2005.