Page 220 - Optofluidics Fundamentals, Devices, and Applications
P. 220
Adaptive Optofluidic Devices 195
26. V.I. Sukhanov, F.L. Vladimirov, and D.A. Monakhov, “How the surface prop-
erties of the liquid element affect the response time of a liquid optical deflec-
tor,” J. Opt. Technol., 71 (3), 2004.
27. J.J. Uebbing, S. Hengstler, D. Schroeder, S. Venkatesh, and R. Haven, “Heat
and fluid flow in an optical switch bubble,” J. Microelectrom. Syst., 15,
6, 2006.
28. G. Beni and S. Hackwood, “Electro-wetting displays,” Appl. Phys. Lett., 38,
207, 1981.
29. J. Heikenfeld and A.J. Steckl, “High-transmission electrowetting light valves,”
Appl. Phys. Lett., 86 (15), 151121, 2005.
30. J. Heikenfeld and A.J. Steckl, “Intense switchable fluorescence in light wave
coupled electrowetting devices,” Appl. Phys. Lett., 86 (1), 011105, 2005.
31. L. Hou, N.R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any
optical film,” Appl. Phys. Lett., 90 (25), 251114, 2007.
32. M. Makihara, M. Sato, F. Shimokawa, and Y. Nishida, “Micromechanical opti-
cal switches based on thermocapillary integrated in waveguide substrate,”
Lightwave Technol., 17(1), 14, 1999.
33. Nam-Trung Nguyen, Tian-Fook Kong, Jun-Hui Goh, and Cassandra Lee-
Ngo Low, “A micro optofluidic splitter and switch based on hydrodynamic
spreading,” J. Micromech. Microeng., 17, 2007, 2169–2174.
34. J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, and P.W. Barth, “A
compact, scalable crossconnect switch using total internal reflection due to
thermally-generated bubbles,” in IEEE LEOS Annual Meeting, Orlando, 1998.
35. J.E. Fouquet, “Compact optical cross-connect switch based on total internal
reflection in a fluid containing planar lightwave circuit,” OFC, Baltimore,
March 7–10, 2000.
36. S. Hengstler, J.J. Uebbing, and P. McGuire, “Laser-activated optical bubble
switch element,” Proceedings of the 29th European Conference on Optical
Communication—14th International Conference on Integrated Optics and Optical
Fiber Communication (ECOC-IOOC 2003), September 2003.
37. T. Sakata, H. Togo, M. Makihara, F. Shimokawa, and K. Kaneko, “Improvement
of switching time in a thermocapillarity optical switch,” J. Lightwave Technol.,
19 (7), 1023–1027, July 2001.
38. S. Venkatesh, J.-W. Son, J.E. Fouquet, R.E. Haven, D. Schroeder, H. Guo, W.
Wang, P. Russell, A. Chow, and P.F. Hoffmann, “Recent advances in bubble
actuated photonic cross-connect,” Silicon-based and Hybrid Optoelectronics IV,
January 2002.
39. G.H.G.V. Studer, A. Pandolfi, M. Ortiz, W.F. Anderson, and S.R Quake, Scaling
properties of a low-actuation pressure microfluidic valve, J. Appl. Physics, 95,
393, 2004.
40. R.A. Hayes, B.J. Feenstra, “Video-speed electronic paper based on electrowet-
ting,” Nature, 425, 383–385, 2003.
41. M. Hashimoto, B. Mayers, P. Garstecki, and G.M. Whitesides, “Flowing lat-
tices of bubbles as tunable, self-assembled diffraction gratings,” SMALL 2
(11), 1292–1298, 2006.
42. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, and H.A.
Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing
device,” Appl. Phys. Lett., 2004, 85, 2649.
43. S. Zamek, K. Campbell, L. Pang, A. Groisman, Y. Fainman, “Optofluidic 1 × 4
switch”, CLEO, CTuR4, 2008.
44. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman,
“Optofluidic 1 × 4 switch”, Opt. Express, 16 (18), 13499–13508, 2008.
45. M. Neviere, “Electromagnetic study of transmission gratings,” Appl. Opt. 30,
4540–4547, 1991.
46. R. Petit, “Electromagnetic Theory of Gratings,” Topics in Applied Physics,
Springer, 1980.
47. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, John Wiley and Sons,
New York, 1991, Chap. 21, Photonic Switching and Computing.
48. D. Shaw and C-W Lin, “Design and analysis of an asymmetrical liquid-filled
lens,” Opt. Eng., 46, 123002 (2007).