Page 224 - Optofluidics Fundamentals, Devices, and Applications
P. 224
Adaptive Optofluidic Devices 199
125. Z.D. Popovic, R.A. Sprague, and G.A.N. Connell, “Technique for monolithic
fabrication of microlens arrays,” Appl. Opt., 27, 1281–1284, 1988.
126. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive microlens
fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182, 1998.
127. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato,
“Ultraviolet-cured polymer microlens arrays,” Appl. Opt., 138, 2991–2996,
1999.
128. D.M. Hartmann, O. Kibar, and S.C. Esener, “Characterization of a polymer
microlens fabricated by use of the hydrophobic effect,” Opt. Lett., 25, 975–977,
2000.
129. C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed
diffractive optical elements,” Microelectron. Eng., 53, 677–680, 2000.
130. M.-H. Wu and G.M. Whitesides, “Fabrication of two-dimensional arrays
of microlenses and their applications in photolithography,” J. Micromech.
Microeng., 12, 747–758, 2002.
131. W.X. Yu and X.C. Yuan, “UV induced controllable volume growth in hybrid
sol-gel glass for fabrication of a refractive microlens by use of a grayscale
mask,” Opt. Express, 11, 2253–2258, 2003.
132. F.T. O’Neill and J.T. Sheridan, “Photoresist reflow method of microlens pro-
duction Part I: Background and experiments,” Optik, 113, 391–404, 2002.
133. X.J. Shen, L.W. Pan, and L.W. Lin, “Microplastic embossing process: experi-
mental and theoretical characterizations,” Sens. Actuators A, 97, 428–433,
2002.
134. M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O.
Nalamasu, and J.A Rodgers, “Low-cost, low-loss microlens arrays fabricated
by soft-lithography replication process,” Appl. Phys. Lett., 82, 1152–1154,
2003.
135. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori,
“Surface-mountable silicon microlens for low-cost laser modules,” IEEE
Photon. Technol. Lett., 15, 945–947, 2003.
136. Teng-Kai Shin, Jeng-Rong Ho, and J.-W.J. Cheng, “A new approach to poly-
meric microlens array fabrication using soft replica molding,” IEEE Photon.
Technol. Lett., 16(9), 2078–2080, September 2004.
137. S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays
fabricated by a 3D diffuser lithography and plastic replication method,” Opt.
Express, 12 (25), 6366–6371, 2004.
138. T. Bourouina, T. Masuzawa, and H. Fujita, “The MEMSNAS process:
Microloading effect for micromachining 3-D structures of nearly all shapes,”
J. Microelectromech. Syst., 13, 190–199, 2004.
139. A. Llobera, A.R. Wilke, D.W. Johnson, and S. Buttgenbach, “Polymer micro-
lenses with modified micromolding in capillaries (MIMIC) technology,” IEEE
Photon. Technol. Lett., 17, 2628–2630, 2005.
140. J.B. Orhan, V.K. Parashar, A. Sayah, and M.A.M. Gijs, “Fabrication and
characterization of three-dimensional microlens arrays in sol-gel glass,” J.
Microelectromech. Syst., 15, 1159–1164, 2006.
141. T.H. Lin, H. Yang, and C.K. Chao, “Concave microlens array mold fabrication
in photoresist using UV proximity printing,” Microsystem Technologies, 13, 11,
2007, Dans Symposium on Design, Test, Integration and Packaging of MEMS/
MOEMS–DTIP Stresa, Lago Maggiore, Italie, 2006.
142. A.L. Glebov, L.D. Huang, S. Aoki, M. Lee, and K. Yokouchi, “Planar hybrid
polymer-silica microlenses with tunable beamwidth and focal length,” IEEE
Photon. Technol. Lett., 16, 1107–1109 (2004).
143. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic
Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science,
288, 113, 2000.
144. W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, and R.A. Mathies,
“Monolithic membrane valves and diaphragm pumps for practical large-
scale integration into glass microfluidic devices,“ Sens. Actuators B - Chem.,
89, 315, 2003.