Page 219 - Optofluidics Fundamentals, Devices, and Applications
P. 219
194 Cha pte r Ei g h t
to provide smoother surfaces, smaller form factors, robustness and
better repeatability, faster prototyping, and therefore lower costs of
optofluidic devices. Commercialization of some of the reviewed tech-
nologies shows much promise for optofluidics for adaptation as an
evolving new field.
References
1. C. Monat, P. Domachuk, and B.J. Eggleton, “Integrated optofluidics: A new
river of light,” Nat. Photonics, 1, 106–114, 2007.
2. D. Psaltis, S.R. Quake, and C. Yang, “Developing optofluidic technology
through the fusion of microfluidics and optics,” Nature, 442, 381–386, 2006.
3. I.P. Kaminow and E.H. Turner, Proc. IEEE, 54, 1374, 1966.
4. T. Motoki, “Low voltage optical modulator using electrooptically induced
phase gratings,” Appl. Opt., 12, 1472–1476, 1973.
5. R.P. Kenan, C.M. Verber, and Van E. Wood, “Wide-angle electro-optic switch,”
Appl. Phys. Lett., 24, 428, 1974.
6. R.C. Alferness, “Waveguide electrooptic switch arrays,” Selected Areas in
Communications, 6 (7), 1117–1130, 1988.
7. R.W. Dixon, “Photoelastic properties of selected materials and their relevance
for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38,
5149, 1967.
8. D.A. Smith, R.S. Chakravarthy, Z.Y. Bao, J. E. Baran, J.L. Jackel, A. dAles-
sandro, D.J. Fritz, S.H. Huang, X.Y. Zou, S.M. Hwang, A.E. Willner, and K.D.
Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave
Technol., 14, 1005–1019, 1996.
9. M. Shirasaki, N. Takagi, T. Obokata, and K. Shirai, “Bistable magnetoop-
tic switch using YIG crystal with phase matching films,” IEEE J. Quantum
Electron., 17 (12), 2498–2499, December 1981.
10. M. Haruna and J. Koyama, “Thermooptic deflection and switching in glass,”
Appl. Opt., 21, 3461–3465, 1982.
11. A.A. Zatykin, S.K. Morshnev, and A.V. Frantsesson, “A thermooptic fiber
switch,” Kvantovaya Elektronika, 12 (1), 211–213, 1985.
12. K.E. Petersen, “Micromechanical light modulator array fabricated on silicon
[laser display applications],” Appl. Phys. Lett., 31 (8), 521–523, October 1977.
13. M.C. Wu, A. Solgaard, and J.E. Ford, “Optical MEMS for lightwave commu-
nication,” J. Lightwave Technol. 24 (12), 4433–4454, 2006.
14. M.J. Brady, L.V. Gregor, and M. Johnson, U.S. Patent No. 4384761, 1983.
15. J.M. Ginder, J.T. Remillard, and W.H. Weber, U.S. Patent No. 5351319, 1994.
16. M. Saito, M. Takakuwa, and M. Miyagi, IEICE Trans. Electron., E78-C, 1995, 1465.
17. S. Taketomi, Jpn. J. Appl. Phys., 22, 1983, 1137.
18. S. Taketomi, U.S. Patent No. 4812767, 1989.
19. C.Y. Hong, “Optical switch devices using the magnetic fluid thin films,”
J. Magn. Magn. Mater., 201, 1999, 178–181.
20. G. Da Costa, “All-optical light switch using interaction between low-power
light beams in a liquid film,” Opt. Eng., 25, 1058, 1986.
21. G. Da Costa and R. Escalona, “Time evolution of the caustics of a laser heated
liquid film,” Appl. Opt., 29, 1023–1033, 1990.
22. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis,
and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett, 85,
6119–6121, 2004.
23. J.L. Jackel and W.J. Tomlinson, “Bistable optical switching using electrochemi-
cally generated bubbles,” Opt. Lett., 15 (24), 1470, 1990.
24. A. Ware, “New photonic-switching technology for all-optical networks,”
Lightwave, 92–98, 2000.
25. S. Hengstler, J. J. Uebbing, and P. McGuire, “Laser-activated optical bubble
switch element,” Proceedings of the 2003 IEEE/LEOS International Conference on
Optical MEMS (OMEMS 2003), 117–118, August 2003.