Page 219 - Optofluidics Fundamentals, Devices, and Applications
P. 219

194     Cha pte r  Ei g h t


               to provide smoother surfaces, smaller form factors, robustness and
               better repeatability, faster prototyping, and therefore lower costs of
               optofluidic devices. Commercialization of some of the reviewed tech-
               nologies shows much promise for optofluidics for adaptation as an
               evolving new field.


          References
                1.   C. Monat, P. Domachuk, and B.J. Eggleton, “Integrated optofluidics: A new
                   river of light,” Nat. Photonics, 1, 106–114, 2007.
                  2.  D. Psaltis, S.R. Quake, and C. Yang, “Developing optofluidic technology
                   through the fusion of microfluidics and optics,” Nature, 442, 381–386, 2006.
                  3.  I.P. Kaminow and E.H. Turner, Proc. IEEE, 54, 1374, 1966.
                  4.  T. Motoki, “Low voltage optical modulator using electrooptically induced
                   phase gratings,” Appl. Opt., 12, 1472–1476, 1973.
                  5.  R.P. Kenan, C.M. Verber, and Van E. Wood, “Wide-angle electro-optic switch,”
                   Appl. Phys. Lett., 24, 428, 1974.
                  6.  R.C. Alferness, “Waveguide electrooptic switch arrays,” Selected Areas in
                   Communications, 6 (7), 1117–1130, 1988.
                  7.  R.W. Dixon, “Photoelastic properties of selected materials and their relevance
                   for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38,
                   5149, 1967.
                  8.  D.A. Smith, R.S. Chakravarthy, Z.Y. Bao, J. E. Baran, J.L. Jackel, A. dAles-
                   sandro, D.J. Fritz, S.H. Huang, X.Y. Zou, S.M. Hwang, A.E. Willner, and K.D.
                   Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave
                   Technol., 14, 1005–1019, 1996.
                  9.  M. Shirasaki, N. Takagi, T. Obokata, and K. Shirai, “Bistable magnetoop-
                   tic switch using YIG crystal with phase matching films,” IEEE J. Quantum
                   Electron., 17 (12), 2498–2499, December 1981.
                10.  M. Haruna and J. Koyama, “Thermooptic deflection and switching in glass,”
                   Appl. Opt., 21, 3461–3465, 1982.
                11.  A.A. Zatykin, S.K. Morshnev, and A.V. Frantsesson, “A thermooptic fiber
                   switch,” Kvantovaya Elektronika, 12 (1), 211–213, 1985.
                12.  K.E. Petersen, “Micromechanical light modulator array fabricated on silicon
                   [laser display applications],” Appl. Phys. Lett., 31 (8), 521–523, October 1977.
                13.  M.C. Wu, A. Solgaard, and J.E. Ford, “Optical MEMS for lightwave commu-
                   nication,” J. Lightwave Technol. 24 (12), 4433–4454, 2006.
                14.  M.J. Brady, L.V. Gregor, and M. Johnson, U.S. Patent No. 4384761, 1983.
                15.  J.M. Ginder, J.T. Remillard, and W.H. Weber, U.S. Patent No. 5351319, 1994.
                16.  M. Saito, M. Takakuwa, and M. Miyagi, IEICE Trans. Electron., E78-C, 1995, 1465.
                17. S. Taketomi, Jpn. J. Appl. Phys., 22, 1983, 1137.
                18.  S. Taketomi, U.S. Patent No. 4812767, 1989.
                19.  C.Y. Hong, “Optical switch devices using the magnetic fluid thin films,”
                   J. Magn. Magn. Mater., 201, 1999, 178–181.
                20.  G. Da Costa, “All-optical light switch using interaction between low-power
                   light beams in a liquid film,” Opt. Eng., 25, 1058, 1986.
                21.  G. Da Costa and R. Escalona, “Time evolution of the caustics of a laser heated
                   liquid film,” Appl. Opt., 29, 1023–1033, 1990.
                22.  K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis,
                   and Y. Fainman, “A microfluidic 2 × 2 optical switch,” Appl. Phys. Lett, 85,
                   6119–6121, 2004.
                23.  J.L. Jackel and W.J. Tomlinson, “Bistable optical switching using electrochemi-
                   cally generated bubbles,” Opt. Lett., 15 (24), 1470, 1990.
                24.  A. Ware, “New photonic-switching technology for all-optical networks,”
                   Lightwave, 92–98, 2000.
                25.  S. Hengstler, J. J. Uebbing, and P. McGuire, “Laser-activated optical bubble
                   switch element,” Proceedings of the 2003 IEEE/LEOS International Conference on
                   Optical MEMS (OMEMS 2003), 117–118, August 2003.
   214   215   216   217   218   219   220   221   222   223   224