Page 262 - Optofluidics Fundamentals, Devices, and Applications
P. 262

236     Cha pte r  Ni ne


               used to replace intraocular lens to restore and improve human vision.
               The maturing technology of membrane processing also makes
               possible for an innovative tunable molding technology to allow
               aspheric lenses to be made easily and fast. Stemming from three-
               dimensional imaging optics, two-dimensional nonimaging fluidic
               lenses can be integrated into next-generation lab-on-a-chip devices
               and micro-total-analysis chips such that advanced optical interrogation
               systems can be integrated with microfluidic devices on a single chip.


          References
                 1.  A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications,
                   Oxford University Press, New York, 2007.
                 2.  K. Iizuka, Elements of Photonics, vol. I, Wiley-Interscience, 2002.
                   3.  S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Optical
                   Review, vol. 6, pp. 471–485, 1999.
                   4.  M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is
                   variable in a wide range,” Applied Optics, vol. 43, pp. 6407–6412, 2004.
                   5.  M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal
                   plane,” Optics Communications, vol. 259, pp. 710–722, 2006.
                   6.  B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable
                   from negative to positive values,” Photonics Technology Letters, IEEE, vol. 18,
                   pp. 79–81, 2006.
                   7.  H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length
                   tunability,” Optics Express, New York, vol. 14, pp. 11292–11298, 2006.
                   8.  Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens
                   arrays with switchable positive and negative focal lengths,” IEEE/OSA Journal
                   of Display Technology, New York, vol. 1, pp. 151–156, 2005.
                   9.  B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length
                   made by a glass lens and liquid-crystal layers,” Applied Optics, vol. 43,
                   pp. 3420–3425, 2004.
                 10.  V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized
                   liquid-crystal lens,” Journal of Applied Physics, vol. 97, pp. 103101, 2005.
                 11.  V. Presnyakov and T. Galstian, “Polymer-stabilized liquid crystal lens for
                   electro-optical zoom,” Proceedings of SPIE, vol. 5577, p. 861, 2004.
                 12.  V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized
                   liquid crystal for tunable microlens applications,” Optics Express, vol. 10,
                   pp. 865–870, 2002.
                 13.  H. Ren, Y. H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using
                   polymer network liquid crystal,” Optics Communications, vol. 230, pp. 267–271,
                   2004.
                 14.  L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length micro-
                   lenses,” Optics Communications, vol. 177, pp. 157–170, 2000.
                 15.  A. M. R. L. Yang, E. M. McCabe, L. A. Dunbar, and T. Scharf, “Confocal
                   microscopy using variable-focal-length microlenses and an optical fiber
                   bundle,” Applied Optics, vol. 44, pp. 5928–5936, 2005.
                 16.  J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal
                   lens for spherical aberration compensation in a Blu-ray disc system,” Science,
                   Measurement and Technology, IEE Proceedings, vol. 152, pp. 15–18, 2005.
                 17.  M. Hain, R. Gl kner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi,
                   “Fast switching liquid crystal lenses for a dual focus digital versatile disc
                   pickup,” Optics Communications, vol. 188, pp. 291–299, 2001.
                 18.  B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage:
                   An application of electrowetting,” The European Physical Journal E-Soft Matter,
                   vol. 3, pp. 159–163, 2000.
   257   258   259   260   261   262   263   264   265   266   267