Page 262 - Optofluidics Fundamentals, Devices, and Applications
P. 262
236 Cha pte r Ni ne
used to replace intraocular lens to restore and improve human vision.
The maturing technology of membrane processing also makes
possible for an innovative tunable molding technology to allow
aspheric lenses to be made easily and fast. Stemming from three-
dimensional imaging optics, two-dimensional nonimaging fluidic
lenses can be integrated into next-generation lab-on-a-chip devices
and micro-total-analysis chips such that advanced optical interrogation
systems can be integrated with microfluidic devices on a single chip.
References
1. A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications,
Oxford University Press, New York, 2007.
2. K. Iizuka, Elements of Photonics, vol. I, Wiley-Interscience, 2002.
3. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Optical
Review, vol. 6, pp. 471–485, 1999.
4. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is
variable in a wide range,” Applied Optics, vol. 43, pp. 6407–6412, 2004.
5. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal
plane,” Optics Communications, vol. 259, pp. 710–722, 2006.
6. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable
from negative to positive values,” Photonics Technology Letters, IEEE, vol. 18,
pp. 79–81, 2006.
7. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length
tunability,” Optics Express, New York, vol. 14, pp. 11292–11298, 2006.
8. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens
arrays with switchable positive and negative focal lengths,” IEEE/OSA Journal
of Display Technology, New York, vol. 1, pp. 151–156, 2005.
9. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length
made by a glass lens and liquid-crystal layers,” Applied Optics, vol. 43,
pp. 3420–3425, 2004.
10. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized
liquid-crystal lens,” Journal of Applied Physics, vol. 97, pp. 103101, 2005.
11. V. Presnyakov and T. Galstian, “Polymer-stabilized liquid crystal lens for
electro-optical zoom,” Proceedings of SPIE, vol. 5577, p. 861, 2004.
12. V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized
liquid crystal for tunable microlens applications,” Optics Express, vol. 10,
pp. 865–870, 2002.
13. H. Ren, Y. H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using
polymer network liquid crystal,” Optics Communications, vol. 230, pp. 267–271,
2004.
14. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length micro-
lenses,” Optics Communications, vol. 177, pp. 157–170, 2000.
15. A. M. R. L. Yang, E. M. McCabe, L. A. Dunbar, and T. Scharf, “Confocal
microscopy using variable-focal-length microlenses and an optical fiber
bundle,” Applied Optics, vol. 44, pp. 5928–5936, 2005.
16. J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal
lens for spherical aberration compensation in a Blu-ray disc system,” Science,
Measurement and Technology, IEE Proceedings, vol. 152, pp. 15–18, 2005.
17. M. Hain, R. Gl kner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi,
“Fast switching liquid crystal lenses for a dual focus digital versatile disc
pickup,” Optics Communications, vol. 188, pp. 291–299, 2001.
18. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage:
An application of electrowetting,” The European Physical Journal E-Soft Matter,
vol. 3, pp. 159–163, 2000.