Page 263 - Optofluidics Fundamentals, Devices, and Applications
P. 263
Bio-Inspir ed Fluidic Lenses for Imaging and Integrated Optics 237
19. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature
cameras,” Applied Physics Letters, vol. 85, pp. 1128–1130, 2004.
20. J. Park, C.-X. Liu, and J.-W. Choi, “A planar liquid lens design based on elec-
trowetting,” presented at Sensors, 2007 IEEE, 2007.
21. F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “Repositionable liquid
micro-lenses with variable focal length,” Micro Electro Mechanical Systems,
2007, MEMS, IEEE 20th International Conference on, pp. 707–710, 2007.
22. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid
micro-lens array activated by selective electrowetting on lithium niobate sub-
strates,” Optics Express, vol. 16, pp. 8084–8093, 2008.
23. http://www.varioptic.com/en/index.php.
24. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid
droplet lens,” Optics Express, vol. 14, pp. 4101–4106, 2006.
25. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express,
vol. 15, pp. 7140–7145, 2007.
26. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectro-
phoretic effect,” Optics Express, vol. 16, pp. 2646–2652, 2008.
27. D. Zhang, N. Justis, and L. Y.-H., “Fluidic adaptive lens of transformable lens
type,” Applied Physics Letters, vol. 84, pp. 4194–4196, 2004.
28. W. Wang and J. Fang, “Design, fabrication and testing of a micromachined
integrated tunable microlens,” Journal of Micromechanics and Microengineering,
vol. 16, pp. 1221–1226, 2006.
29. K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adap-
tive lenses with millisecond response time,” Applied Physics Letters, vol. 91,
p. 171111, 2007.
30. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,”
Applied Physics Letters, vol. 86, p. 211107, 2005.
31. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid
lens controlled using a servo motor,” Optics Express, vol. 14, pp. 8031–8036,
2006.
32. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electro-
magnetic actuator,” Applied Physics Letters, vol. 90, p. 121129, 2007.
33. R. Kuwano, M. Y., T. Tokunaga, and Y. Otani, “Liquid pressure varifocus lens
using a fibrous actuator,” Proceedings of SPIE, vol. 6374, pp. 1–4, 2006.
34. L. Dong and H. Jiang, “pH-adaptive microlenses using pinned liquid-
liquid interfaces actuated by pH-responsive hydrogel,” Applied Physics
Letters, vol. 89, 2006.
35. F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturzied universal
imaging device using fluidic lens,” Optics Letters, vol. 33, pp. 291–293, 2008.
36. D. Zhang, N. Justis, and Y.-H. Lo, “Integrated fluidic adaptive zoom lens,”
Optics Letters, vol. 29, pp. 2855–2857, 2004.
37. D. Zhang, N. Justis, and Y.-H. Lo, “Integrated fluidic lenses and optic sys-
tems,” IEEE Journal of Selected Topics Quantum Electronics, vol. 11, pp. 97–106,
2005.
38. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive
lens with high focal length tunability,” Applied Physics Letters, vol. 82, pp.
3171–3172, 2003.
39. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high
zoom ratio and widely tunable field of view,” Optics Communications, vol. 249,
pp. 175–182, 2005.
40. A. F. Bower, “Applied mechanics of solids,” 2008.
41. Y. C. Fung, A First Course in Continuum Mechanics, 3d ed. Englewood Cliffs,
New Jersey, Prentice Hall, 1994.
42. A. Shabana, Computational Continuum Mechanics, Cambridge University Press,
New York, 2008.
43. F. S. Tsai, S. H. Cho, W. Qiao, N. H. Kim, and Y. H. Lo, “Miniaturized unified
imaging system using bio-inspired fluidic lens,” Proceedings of SPIE, 2008.
44. W. J. Smith, Modern Lens Design, McGraw-Hill Professional, USA, 2005.
45. R. Kingslake, Lens Design Fundamentals, Academic Press, USA, 1978.