Page 266 - Optofluidics Fundamentals, Devices, and Applications
P. 266
240 Cha pte r Ni ne
87. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip
optical components and microfluidic systems,” Microelectronic Engineering,
vol. 73, pp. 876–880, 2004.
88. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Rapid fabrication of a micro-
fluidic device with integrated optical waveguides for DNA fragment analy-
sis,” Lab on a Chip, vol. 7, pp. 1280–1287, 2007.
89. S. K. Y. Tang, B. T. Mayers, D. V. Vezenov, and G. M. Whitesides, “Optical
waveguiding using thermal gradients across homogeneous liquids in micro-
fluidic channels,” Applied Physics Letters, vol. 88, p. 061112, 2006.
90. S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable
liquid-core liquid-cladding lens in a microfluidic channel,” Lab on a Chip,
vol. 8, pp. 395–401, 2008.
91. L. Dong and H. Jiang, “Tunable and movable liquid microlens in situ fabri-
cated within microfluidic channels,” Applied Physics Letters, vol. 91, p. 041109,
2007.
92. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically
tunable optofluidic cylindrical microlens,” Lab on a Chip, vol. 7, pp. 1303–1308,
2007.
93. J. Godin, V. Lien, and Y. H. Lo, “Integrated fluidic photonics for multiparam-
eter in-plane detection in microfluidic flow cytometry,” Lasers & Electro-Optics
Society, IEEE, pp. 605–606, 2006.
94. J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic
lens for integration into microfluidic flow cytometers,” Applied Physics Letters,
vol. 89, p. 061106, 2006.
95. V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating
optical waveguides with microfluidic devices,” Photonics Technology Letters,
IEEE, vol. 16, pp. 1525–1527, 2004.
96. R. Mazurczyk, J. Vieillard, A. Bouchard, B. Hannes, and S. Krawczyk, “A
novel concept of the integrated fluorescence detection system and its appli-
cation in a lab-on-a-chip microdevice,” Sensors and Actuators B: Chemical,
vol. 118, pp. 11–19, 2006.
97. S. Balslev, B. Bilenberg, O. Geschke, A. M. Jorgensen, A. Kristensen, J. P.
Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system
for lab-on-a-chip applications,” Micro Electro Mechanical Systems (MEMS),
2004, 17th IEEE International Conference on, pp. 89–92, 2004.
98. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly (dimethylsiloxane) hollow
Abbe prism with microlenses for detection based on absorption and refractive
index shift,” Lab on a Chip, vol. 4, pp. 24–27, 2004.
99. A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal
reflection poly (dimethylsiloxane) systems for optical sensing,” Lab on a Chip,
vol. 7, pp. 1560–1566, 2007.
100. S. H. Cho, J. Godin, C. H. Chen, F. S. Tsai, and Y. H. Lo, “Microfluidic photonic
integrated circuits,” Proceedings of SPIE, vol. 7135, pp. 71350M, 2008.
101. H. M. Shapiro, Practical flow cytometry, 4th ed. Hoboken, NY, Wiley-Liss,
2003.
102. A. L. Givan, Flow Cytometry: First Principles, 2d ed. New York, Wiley-Liss,
2001.
103. H. M. Shapiro, “Trends and developments in flow cytometry instrumenta-
tion,” Clinical Flow Cytometry, Annals of the New York Academy of Sciences,
vol. 677, pp. 155–166, 1993.
104. D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics
for flow cytometric analysis of cells and particles,” Physiol. Meas, vol. 26,
pp. R73–R98, 2005.