Page 265 - Optofluidics Fundamentals, Devices, and Applications
P. 265
Bio-Inspir ed Fluidic Lenses for Imaging and Integrated Optics 239
68. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for
optical modeling,” Journal of the Optical Society of America A-Optics Image
Science and Vision, vol. 14, pp. 1684–1695, 1997.
69. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for
an accommodative intraocular lens,” Optics Express, vol. 14, pp. 7757–7775,
2006.
70. R. A. Schachar and A. J. Bax, “Mechanism of human accommodation as ana-
lyzed by nonlinear finite element analysis,” Annals of Ophthalmology, vol. 33,
pp. 103–112, 2001.
71. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape
of the aging human crystalline lens with accommodation,” Vision Research,
vol. 45, pp. 117–132, 2005.
72. C. H. M. Chien, T. Huang, and R. A. Schachar, “Analysis of human crystalline
lens accommodation,” Journal of Biomechanics, vol. 39, pp. 672–680, 2006.
73. E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar,
“Estimating the external force acting on the human eye lens during accommo-
dation by finite element modelling,” Vision Research, vol. 46, pp. 3642–3650,
2006.
74. H. J. Burd, S. J. Judge, and J. A. Cross, “Numerical modelling of the accom-
modating lens,” Vision Research, vol. 42, pp. 2235–2251, 2002.
75. J. Deegan, W. Hurley, B. Bundschuh, and K. Walsh, “Precision glass molding
technical brief,” 2007.
76. Y. Aono, M. Negishi, and J. Takano, “Development of large aperture aspheri-
cal lens with glass molding,” Proceedings of SPIE, vol. 4231, 2000.
77. Y.-C. Tung, M. Zhang, C.-T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-
based opto-fluidic micro flow cytometer with two-color, multiangle fluores-
cence detection capability using PIN photodiodes,” Sensors and Actuators B:
Chemical, vol. 98, pp. 356–367, 2004.
78. S. H. Cho, F. S. Tsai, R. Vasko, J. Vasko, and Y.-H. Lo, “Fluid-filled tunable
mold for polymer lenses,” presented at Optical Society of America-CLEO/QELS
Conference, San Jose, 2008.
79. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl.
Opt, vol. 32, pp. 4181–4186, 1993.
80. S. H. Cho, F. S. Tsai, W. Qiao, N.-H. Kim, and Y.-H. Lo, “Fabrication of aspheri-
cal polymer lenses using tunable liquid-filled mold,” University of California
at San Diego, 2008.
81. A. L. Glebov, L. Huang, S. Aoki, M. G. Lee, and K. Yokouchi, “Two-dimen-
sional microlens arrays in silica-on-silicon planar lightwave circuit tech-
nology,” Journal of Microlithography, Microfabrication, and Microsystems, vol.
2, p. 309, 2003.
82. J. Seo and L. P. Lee, “Fluorescence amplification by self-aligned integrated
microfluidic optical systems,” TRANSDUCERS, Solid-State Sensors, Actuators
and Microsystems, 12th International Conference on, 2003, vol. 2, 2003.
83. Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B.
Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scat-
tered light on a microchip flow cytometer with integrated polymer based
optical elements,” Lab on a Chip, vol. 4, pp. 372–377, 2004.
84. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with
microfluidic channels: principle and characterization,” Lab on a Chip, vol. 3,
pp. 40–45, 2003.
85. K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating
system for extended optical-path-length absorbance detection in microchip-
based capillary electrophoresis,” Analytical Chemistry, vol. 77, pp. 5160–5166,
2005.
86. J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and
photonics for Bio-System-on-a-Chip: A review of advancements in technology
towards a microfluidic flow cytometry chip,” Journal of Biophotonics, vol. 5,
pp. 355-76, 2008.