Page 412 - Organic Electronics in Sensors and Biotechnology
P. 412
Electrophoretically Deposited Polymers for Organic Electronics 389
technique enables design of bacterial biofilms for biotechnological
applications (e.g., biosensors and bioreactors) or as protective coatings
of probiotic bacteria on, for instance, silver-impregnated urinary cath-
eters or voice prostheses in biomedical applications.
In spite of these interesting developments, a lot remains to be
done with regard to both fundamental understanding and the much
needed improvement of the method of electrophoretic deposition for
application to desired organic electronic devices.
References
1. L. Besra and M. Liu, A review on fundamentals and applications of electro-
phoretic deposition (EPD), Progress Mater. Sci. 52:1–61 (2007).
2. E. S. Kooij, E. A. M. Brouwer, and B. Poelsema, Electric field assisted nanocol-
loidal gold deposition, J. Electroanal. Chem. 611:208–216 (2007).
3. N. Koch, Organic electronic devices and their functional interfaces, Chem.
Phys. Chem. 8:1438–1455 (2007).
4. M. Gerard, A. Chaubey, and B. D. Malhotra, Application of conducting poly-
mers to biosensors, Biosens. & Bioelectron. 17:345–359 (2002).
5. A. Chaubey, K. K. Pande, and B. D. Malhotra, Application of polyaniline/sol-
gel derived tetraethylorthosilicate films to an amperometric lactate biosensor,
Anal. Sci., 19:1477–1480 (2003).
6. A. F. Morgerac, B. Ballarinb, A. Filippinia, D. Frascaroa, C. Pianad, and L.
Settia, An amperometric glucose biosensor prototype fabricated by thermal
inkjet printing, Biosens. & Bioelectron. 20:2019–2026 (2005).
7. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, Langmuir–
Blodgett film based biosensor for estimation of galactose in milk, Electrochim.
Acta 49:2479–2485 (2004).
8. S. K. Arya, A. K. Prusty, S. P. Singh, P. R. Solanki, M. K. Pandey, M. Datta,
and B. D. Malhotra, Cholesterol biosensor based on N-(2-aminoethyl)-3-
aminopropyl-trimethoxysilane self-assembled monolayer, Anal. Biochem.
363:210–218 (2007).
9. C. Dhand, S. P. Singh, S. K. Arya, M. Datta, and B. D. Malhotra, Cholesterol
biosensor based on electrophoretically deposited conducting polymer film
derived from nano-structured polyaniline colloidal suspension, Anal. Chim.
Acta 602:244–251 (2007).
10. K. Tada, and M. Onoda, Preparation of donor-acceptor nanocomposite
through electrophoretic deposition, Curr. Appl. Phys. 5:5–8 (2005).
11. K. Tada, and M. Onoda, Preparation and application of nanostructured con-
jugated polymer film by electrophoretic deposition, Thin Solid Films 438–
439:365–368 (2003).
12. K. Tada and M. Onoda, Nanostructured conjugated polymer films for elec-
troluminescent and photovoltaic applications, Thin Solid Films 477:187–192
(2005).
13. I. Zhitomirsky, Cathodic electrodeposition of ceramic and organoceramic
materials fundamental aspects, Adv. in Coll. Int. Sci. 97:279-317 (2002).
14. F. Grollion, D. Fayeulle, and M. Jeandin, Qualitative image analysis of elec-
trophoretic coatings, J. Mater. Sci. Lett. 11:272–275 (1992).
15. D. R. Brown and F. W. Salt, The Mechanism of the electrophoretic deposition,
J. App. Chem. 15:40–48 (1963).
16. P. Sarkar and P. S. Nicholson, Electrophoretic deposition (EPD): Mechanisms,
kinetics, and application to ceramics, J. Am. Ceram. Soc. 79:1987–2002 (1996).
17. H. C. Hamaker and E. J. W. Verwey, Colloid stability: The role of the forces
between the particles in electrodeposition and other phenomena, Trans.
Faraday Soc. 35:180–185 (1940).