Page 416 - Organic Electronics in Sensors and Biotechnology
P. 416

Electrophoretically Deposited Polymers for Organic Electronics   393

                 84.  A. R. Boccaccini, J. A. Roether, B. J. C. Thomas, M. S. P. Shaffer, E. Chavez, and
                   E. Stoll, The electrophoretic deposition of inorganic nanoscaled materials, J.
                   Ceram. Soc. Jpn. 114:1–14 (2006).
                85.  R.  Colorado and  A. R. Barron, Silica-coated single-walled nanotubes:
                   Nanostructure formation, Chem. Mater. 16:2691–2693 (2004).
                 86.  G. Li, C. Martinez, and S. Semancik, Controlled electrophoretic patterning
                   of polyaniline from a colloidal suspension, J. Am. Chem. Soc. 127:4903–4909
                   (2005).
                 87.  H. Qariouh, N. Raklaoui, R. Schue, F. Schue, and C. Bailly, Electrophoretic
                   deposition of polyetherimide from an aqueous emulsion: Optimisation of
                   some deposition parameters, Polym. Int.  48:1183–1192 (1999).
                 88.  J. Ma, C. Wang, and C. H. Liang, Colloidal and electrophoretic behavior of
                   polymer particulates in suspension, Mater. Sci. & Eng. C 27:886–889 (2007).
                 89.  J. Q. Wang and M. Kuwabara, Electrophoretic deposition of BaTiO  films on
                                                                  3
                   a Si substrate coated with conducting polyaniline layers, J. Eur. Ceram. Soc.
                   28:101–108 (2008).
                 90.  Marcel Bohmer, In situ observation of 2-dimensional clustering during elec-
                   trophoretic deposition, Langmuir 12:5747–5750 (1996).
                 91.  C. Dhand, S. K. Arya, S. P. Singh, B. P. Singh, Monika Datta, and B. D. Malhotra,
                   Preparation of polyaniline/multiwalled carbon nanotube composite by novel
                   electrophoretic route Carbon 46:1727–1735 (2008).
                 92.  J. G. Fleming and S. Y. Lin, Three-dimensional photonic crystal with a stop
                   band from 1.35 to 1.95 μm, Opt. Lett. 24:49–51 (1999).
                 93.  A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha,
                   Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A
                   Technique for rapid production of high-quality opals, Chem. Mater. 12:2721–
                   2726 (2000).
                 94.  R. C. Hayward, D. A. Saville, and I. A. Aksay, Electrophoretic assembly of col-
                   loidal crystals with optically tunable micropatterns, Nature 404:56–59 (2000).
                 95.  N. V. Dziomkina, M. A. Hempenius, and G. J. Vancso, Symmetry control of
                   polymer colloidal monolayers and crystals by electrophoretic deposition onto
                   patterned surfaces, Adv. Mater. 17:237–240 (2005).
                 96.  E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and
                   electronics, Phys. Rev. Lett. 58:2059–2062 (1987).
                 97.  N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Photoinduced electron
                   transfer from a conducting polymer to buckminsterfullerene, Science 258:1474-
                   1476 (1992).
                 98.   S. Morita, A. A. Zakhidov, and K. Yoshino, Doping effect of buckminster-
                   fullerene in conducting polymer: Change of absorption spectrum and quench-
                   ing of luminescence, Solid State Commun 82:249–252 (1992).
                 99.  X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, Application of nanopar-
                   ticles in electrochemical sensors and biosensors, Electroanalysis 18(4): 319–326
                   (2006).
               100.  J. Kim, J. W. Grate, and P. Wang, Nanostructures for enzyme stabilization
                   chemical, Eng. Sci. 61:1017–1026 (2005).
   411   412   413   414   415   416   417   418   419   420   421