Page 416 - Organic Electronics in Sensors and Biotechnology
P. 416
Electrophoretically Deposited Polymers for Organic Electronics 393
84. A. R. Boccaccini, J. A. Roether, B. J. C. Thomas, M. S. P. Shaffer, E. Chavez, and
E. Stoll, The electrophoretic deposition of inorganic nanoscaled materials, J.
Ceram. Soc. Jpn. 114:1–14 (2006).
85. R. Colorado and A. R. Barron, Silica-coated single-walled nanotubes:
Nanostructure formation, Chem. Mater. 16:2691–2693 (2004).
86. G. Li, C. Martinez, and S. Semancik, Controlled electrophoretic patterning
of polyaniline from a colloidal suspension, J. Am. Chem. Soc. 127:4903–4909
(2005).
87. H. Qariouh, N. Raklaoui, R. Schue, F. Schue, and C. Bailly, Electrophoretic
deposition of polyetherimide from an aqueous emulsion: Optimisation of
some deposition parameters, Polym. Int. 48:1183–1192 (1999).
88. J. Ma, C. Wang, and C. H. Liang, Colloidal and electrophoretic behavior of
polymer particulates in suspension, Mater. Sci. & Eng. C 27:886–889 (2007).
89. J. Q. Wang and M. Kuwabara, Electrophoretic deposition of BaTiO films on
3
a Si substrate coated with conducting polyaniline layers, J. Eur. Ceram. Soc.
28:101–108 (2008).
90. Marcel Bohmer, In situ observation of 2-dimensional clustering during elec-
trophoretic deposition, Langmuir 12:5747–5750 (1996).
91. C. Dhand, S. K. Arya, S. P. Singh, B. P. Singh, Monika Datta, and B. D. Malhotra,
Preparation of polyaniline/multiwalled carbon nanotube composite by novel
electrophoretic route Carbon 46:1727–1735 (2008).
92. J. G. Fleming and S. Y. Lin, Three-dimensional photonic crystal with a stop
band from 1.35 to 1.95 μm, Opt. Lett. 24:49–51 (1999).
93. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha,
Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A
Technique for rapid production of high-quality opals, Chem. Mater. 12:2721–
2726 (2000).
94. R. C. Hayward, D. A. Saville, and I. A. Aksay, Electrophoretic assembly of col-
loidal crystals with optically tunable micropatterns, Nature 404:56–59 (2000).
95. N. V. Dziomkina, M. A. Hempenius, and G. J. Vancso, Symmetry control of
polymer colloidal monolayers and crystals by electrophoretic deposition onto
patterned surfaces, Adv. Mater. 17:237–240 (2005).
96. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and
electronics, Phys. Rev. Lett. 58:2059–2062 (1987).
97. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Photoinduced electron
transfer from a conducting polymer to buckminsterfullerene, Science 258:1474-
1476 (1992).
98. S. Morita, A. A. Zakhidov, and K. Yoshino, Doping effect of buckminster-
fullerene in conducting polymer: Change of absorption spectrum and quench-
ing of luminescence, Solid State Commun 82:249–252 (1992).
99. X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, Application of nanopar-
ticles in electrochemical sensors and biosensors, Electroanalysis 18(4): 319–326
(2006).
100. J. Kim, J. W. Grate, and P. Wang, Nanostructures for enzyme stabilization
chemical, Eng. Sci. 61:1017–1026 (2005).