Page 414 - Organic Electronics in Sensors and Biotechnology
P. 414
Electrophoretically Deposited Polymers for Organic Electronics 391
40. R. Wang and Y. X. Hu, Patterning hydroxyapatite biocoating by electropho-
retic Deposition, J. Biomed. Mater. Res. Part A: 67A:270–275 (2003).
41. C. Kaya, Electrophoretic deposition of carbon nanotube-reinforced hydroxy-
apatite bioactive layers on Ti–6Al–4V alloys for biomedical applications,
Ceram. Intl. 34:1843-1847 (2008).
42. M. J. Shane, J. B. Talbot, B. G. Kinney, E. Sluzky, and H. R. Hesse, Electrophoretic
deposition of phosphors: II deposition experiments and analysis, J. Colloid
Interface Sci. 165:334–340 (1994).
43. M. T. Ochsenkuehn-Petropoulou, A. F. Altzoumailis, R. Argyropoulou, and
K. M. Ochsenkuehn, Superconducting coatings of MgB prepared by electro-
2
phoretic deposition, Anal. Bioanal. Chem. 379:792–795 (2004).
44. S. J. Limmer and G. Cao, Sol-gel electrophoretic deposition for the growth of
oxide nanorods, Adv. Mater. 15:427–431 (2003).
45. C. S. Du, D. Heldbrant, and N. Pan, Preparation and preliminary property
study of carbon nanotubes films by electrophoretic deposition, Mater. Lett.
57:434–438 (2002).
46. B. J. C. Thomas, A. R. Boccaccini, and M. S. P. Shaffer, Multi-walled carbon
nanotube coatings using electrophoretic deposition (EPD), J. Am. Ceram. Soc.
88:980–982 (2005).
47. O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, Material science
of carbon nanotubes: Fabrication, integration, and properties of macroscopic
structures of carbon nanotubes, Acc. Chem. Res. 35:1045–1053 (2002).
48. S. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, Liquid-phase fabrica-
tion of patterned carbon nanotube field emission cathodes, Appl. Phys. Lett.
84:3738–3740 (2004).
49. E. Antonelli, R. S. da Silva, F. S. de Vicente, A. R. Zanatta, and A. C. Hernandes,
Electrophoretic deposition of Ba Ca TiO nanopowders, J. Mater. Process.
0.77 0.23 3
Technol. 203:526-531 (2008).
50. J. Van Tassel and C. A. Randall, Electrophoretic deposition and sintering of
thin/thick PZT film, J. Eur. Ceram. Soc. 19:955–958 (1999).
51. A. Braun, G. Falk, and R. Clasen, Transparent polycrystalline alumina ceramic
with sub-micrometre microstructure by means of electrophoretic deposition,
Mat.-wiss. u. Werkstofftech. 37:293-297 (2006).
52. L. Besra, C. Compson, and M. Liu, Electrophoretic deposition on non-
conducting substrates: The case of YSZ film on NiO-YSZ composite substrates
for solid oxide fuel cell application, J. Power Sources 173:130–136 (2007).
53. C. Y. Chen, Y. Ru Lyu, C. Y. Su, H. M. Lin, and C. K. Lin, Characterization
of spray pyrolyzed manganese oxide powders deposited by electrophoretic
deposition technique, Surf. & Coatings Technol. 202:1277–1281 (2007).
54. M. Trau, D. A. Saville, and I. A. Aksay, Field-induced layering of colloidal
crystals, Science 272:706–709 (1996).
55. M. Bohmer, In situ observation of 2-dimensional clustering during electro-
phoretic deposition, Langmuir. 12:5747–5750 (1996).
56. M. Trau, D. A. Saville, and I. A. Aksay, Assembly of colloidal crystals at elec-
trode interfaces, Langmuir. 13:6375–6381 (1997).
57. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha,
Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A
technique for rapid production of high-quality opals, Chem. Mater. 12:2721–
2726 (2000).
58. Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D. A. Tryk, A. Fujishima,
et al., Porous film by electrophoresis, J. Am. Chem. Soc. 123:175–176 (2001).
59. W. D. Ristenpart, I. A. Aksay, and D. A. Saville, Electrically guided assembly of
planar superlattices in binary colloidal suspensions, Phys. Rev. Lett. 90:128303
(2003).
60. P. J. Sides, Electrodynamically particle aggregation on an electrode driven by
an alternating electric field normal to it, Langmuir 17:5791–5800 (2001).
61. W. Ristenpart, I. A. Aksay, and D. A. Saville, Electrohydrodynamic flow,
kinetic experiments and scaling analysis, Phys. Rev. E 69:021405 (2004).