Page 415 - Organic Electronics in Sensors and Biotechnology
P. 415

392    Chapter  Ten

                 62.  J. A. Fagan, P. J. Sides, and D. C. Prieve, Vertical motion of a charged colloidal
                   particle near an ac polarized electrode with a nonuniform potential distribu-
                   tion: Theory and experimental evidence, Langmuir 20:4823–4834 (2004).
                 63.  J. A. Fagan, P. J. Sides, and D. C. Prieve, Evidence of multiple electrohydrody-
                   namic forces acting on a colloidal particle near an electrode due to an alternat-
                   ing current electric field, Langmuir 21:1784–1794 (2005).
                 64.  R. C. Bailey, K. J. Stevenson, and J. T. Hupp, Assembly of micropatterned col-
                   loidal gold thin films via microtransfer molding and electrophoretic deposi-
                   tion, Adv. Mater. 12:1930–1934 (2000).
                 65.  M. Gao, J. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, Lateral
                   patterning of CdTe nanocrystal films by the electric field directed layer-by-
                   layer assembly method, Langmuir 18:4098–4102 (2002).
                 66.  O. D. Velev and K. H. Bhatt, On-chip micromanipulation and assembly of
                   colloidal particles by electric fields, Soft Matter 2:738–750 (2006).
                 67.  E. S. Kooij, E. A. M. Brouwer, and B. Poelsema, Electric field assisted nanocol-
                   loidal gold deposition, J. Electroanal. Chem. 611:208–216 (2007).
                 68.  N. Nagarajan and P. S. Nicholson, Nickel-Alumina functionally graded mate-
                   rials by electrophoretic deposition, J. Am. Ceram. Soc., 87:2053–2057 (2004).
                 69.  P. Sarkar, S. Datta, and P. S. Nicholson, Functionally graded ceramic/ceramic
                   and metal/ceramic composites by electrophoretic deposition, Compos. Part B:
                   Eng. 28:49–56 (1997).
                 70.  G. Milczarek and A. Ciszewski, Preparation of phthalocyanine modified elec-
                   trodes. An electrophoretic approach, Electroanalysis 17:371–374 (2005).
                 71.  R. C. Bailey, K. J. Stevenson, and J. T. Hupp, Assembly of micropatterned col-
                   loidal gold thin films via microtransfer molding and electrophoretic deposi-
                   tion, Adv. Mater. 12:1930–1934 (2000).
                 72.  S. Iijima, Helical microtubules of graphitic carbon, Nature 354:56–58 (1991).
                 73.  M. Trojanowicz, Analytical applications of carbon nanotubes: A review, Trends
                   in Anal. Chem. 25:480–489 (2006).
                 74.  C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electro-
                   chemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett.
                   70:1480–1482 (1997).
                 75.  C. Du and N. Pan, High power density supercapacitor electrodes of carbon
                   nanotube films by electrophoretic deposition, Nanotechnology 17:5314–5318
                   (2006).
                 76.  H. Zhao, H. Song, Z. Li, G. Yuan, and Y. Jin, Electrophoretic deposition and
                   field emission properties of patterned carbon nanotubes, Appl. Surf. Sci.
                   251:242–244 (2005).
                 77.  M. J. Andrade, M. D. Lima, V. Skakalov, C. P. Bergmann, and S. Roth, Electrical
                   properties of transparent carbon nanotube networks prepared through differ-
                   ent techniques, Phys. Stat. Sol. (RRL) 5:178–180 (2007).
                 78.  G. Girishkumar, K. Vinodgopal, and P. V. Kamat, Carbon nanostructures in
                   portable fuel cells: Single-walled carbon nanotube electrodes for methanol
                   oxidation and oxygen reduction, J. Phys. Chem. B 108:19960–19966 (2004).
                 79.  G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn,
                   and P. Kamat, Single-wall carbon nanotube-based proton exchange mem-
                   brane assembly for hydrogen fuel cells, Langmuir 21:8487–8494 (2005).
                 80.  D. Kurnosov, A. S. Bugaev, K. N. Nikolski, R. Tchesov, and E. Sheshin, Influence
                   of the interelectrode distance in electrophoretic cold cathode fabrication on
                   the emission uniformity, Appl. Surf. Sci. 215:232–236 (2003).
                 81.  H. Shimoda, S. J. Oh, H. Z. Geng, R. J. Walker, X. B. Zhang, and L. E. McNeil,
                   Self-assembly of carbon nanotubes, Adv. Mater. 14:899–901 (2002).
                82.  P. Kamat, K. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and
                   D. Meisel, Self-assembled linear bundles of single wall carbon nanotubes
                   and their alignment and deposition as a film in a dc field, J. Am. Chem. Soc.
                   126:10757–10762 (2004).
                 83.  I. Singh, C. Kaya, M. S. P. Shaffer, B. J. C. Thomas, and A. R. Boccaccini,
                   Bioactive ceramic coatings containing carbon nanotubes on metallic substrates
                   by electrophoretic deposition (EPD), J. Mater. Sci. 41:8144–8151 (2006).
   410   411   412   413   414   415   416   417   418   419   420