Page 332 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 332

Series solutions of differential equations        323

                          Since the parameter ë is equal to a positive integer n, the energy E of the harmonic
                        oscillator in equation (G.7) is
                                                     1
                                            E n ˆ (n ‡ )"ù,   n ˆ 0, 1, 2, .. .
                                                     2
                        in agreement with equation (4.30). Setting ë in equation (G.10) equal to the integer n
                        gives
                                                   u0 ÿ 2îu9 ‡ 2nu ˆ 0                    (G:17)
                        A comparison of equation (G.17) with (D.10) shows that the solutions u(î) are the
                        Hermite polynomials, whose properties are discussed in Appendix D. Thus, the
                        functions ö n (î) for the harmonic oscillator are
                                                                   2
                                                  ö n (î) ˆ a n H n (î)e ÿî =2
                        where a n are the constants which normalize ö n (î). Application of equation (D.14)
                        yields the ®nal result
                                                                         2
                                                     n
                                                            ð
                                            ö n (î) ˆ (2 n!) ÿ1=2 ÿ1=4  H n (î)e ÿî =2
                        which agrees with equation (4.40).
                        Orbital angular momentum
                        We wish to solve the differential equation
                                                 ^ 2          2                           (G:18)
                                                 L ø(è, j) ˆ ë" ø(è, j)
                             ^ 2
                        where L is given by equation (5.32) as
                                                 "                           #

                                                   1   @       @       1   @ 2
                                         ^ 2    2         sin è    ‡                      (G:19)
                                         L ˆÿ"
                                                  sin è @è     @è    sin è @j 2
                                                                        2
                        We write the function ø(è, j) as the product of two functions, one depending only on
                        the angle è, the other only on j
                                                  ø(è, j) ˆ È(è)Ö(j)                      (G:20)
                        When equations (G.19) and (G.20) are substituted into (G.18), we obtain after a little
                        rearrangement

                                                                           2
                                         sin è d  sin è  dÈ      2      1 d Ö
                                           È dè        dè  ‡ ë sin è ˆÿ  Ö dj 2           (G:21)
                        The left-hand side of equation (G.21) depends only on the variable è, while the right-
                        hand side depends only on j. Following the same argument used in the solution of
                        equation (2.28), each side of equation (G.21) must be equal to a constant, which we
                                2
                        write as m . Thus, equation (G.21) separates into two differential equations

                                            sin è d  sin è  dÈ      2     2
                                             È dè        dè   ‡ ë sin è ˆ m               (G:22)
                        and
                                                      2
                                                     d Ö  ˆÿm Ö
                                                               2
                                                      dj 2                                (G:23)
                        The solution of equation (G.23) is
                                                       Ö ˆ Ae imj                         (G:24)
                        where A is an arbitrary constant. In order for Ö to be single-valued, we require that
                                                   Ö(j) ˆ Ö(j ‡ 2ð)
                        or
   327   328   329   330   331   332   333   334   335   336   337