Page 331 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 331

322                             Appendix G
                                               2            3
                                              2 ë(2 ÿ ë)   2 ë(2 ÿ ë)(4 ÿ ë)
                                          2             4                  6
                             u 1 ˆ a 0 1 ÿ ëî ÿ        î ÿ                î ÿ                 (G:16a)
                                                 4!               6!

                                                     2
                                                                       3
                                        2(1 ÿ ë)  3  2 (1 ÿ ë)(3 ÿ ë)  5  2 (1 ÿ ë)(3 ÿ ë)(5 ÿ ë)  7
                             u 2 ˆ a 1 î ‡     î ‡                î ‡                     î ‡
                                           3!             5!                   7!
                                                                                              (G:16b)
                             The solution u 1 is an even function of the variable î and u 2 is an odd function of î.
                             Accordingly, u 1 and u 2 are independent solutions. For the case s ˆ 1, we again obtain
                             the solution u 2 .
                               The ratio of consecutive terms in either series solution u 1 or u 2 is given by the
                             recursion formula with s ˆ 0as
                                                    a k‡2 î  k‡2  2(k ÿ ë)
                                                             ˆ             î 2
                                                      a k î k  (k ‡ 2)(k ‡ 1)
                             In the limit as k !1, this ratio approaches zero
                                                        a k‡2 î k‡2    2
                                                                          2
                                                    lim         ! lim   î ! 0
                                                   k!1   a k î k   k!1 k
                             so that the series u 1 and u 2 converge for all ®nite values of î. To see what happens to
                             u 1 and u 2 as î ! 1, we consider the Taylor series expansion of e î 2
                                                      1  î 2n         î 4  î 6
                                                     X
                                                                   2
                                                e î 2  ˆ    ˆ 1 ‡ î ‡    ‡   ‡
                                                         n!           2!   3!
                                                      nˆ0
                             The coef®cient a n is given by a n ˆ 1=(n=2)! for n even and a n ˆ 0 for n odd, so that

                                                     n
                                       a n‡2 î n‡2   2  !          1        2î 2
                                                                        2
                                                            2          î         as n !1
                                         a n î  n  ˆ   n ‡ 2   î ˆ   n       n
                                                          !       ‡ 1
                                                     2           2
                             Thus, u 1 and u 2 behave like e î  2  as î ! 1. For large jîj, the function ö(î) behaves
                             like
                                                            2
                                                           î
                                                     2
                                                                      2
                                                               2
                                        ö(î) ˆ u(î)e ÿî =2    e e ÿî =2  ˆ e î =2  !1 as î ! 1
                             which is not satisfactory behavior for a wave function.
                               In order to obtain well-behaved solutions for the differential equation (G.8), we need
                             to terminate the in®nite power series u 1 and u 2 in (G.16) to a ®nite polynomial. If we
                             let ë equal an integer n (n ˆ 0, 1, 2, 3, .. .), then we obtain well-behaved solutions
                             ö(î)
                                                              2
                                          n ˆ 0,    ö 0 ˆ a 0 e ÿî =2 ,  a 1 ˆ 0
                                                               2
                                          n ˆ 1,    ö 1 ˆ a 1 îe ÿî =2 ,  a 0 ˆ 0
                                                                      2
                                                                  2
                                          n ˆ 2,    ö 2 ˆ a 0 (1 ÿ 2î )e ÿî =2 ,  a 1 ˆ 0
                                                                       2
                                                                2 2
                                          n ˆ 3,    ö 3 ˆ a 1 î(1 ÿ î )e ÿî =2 ,  a 0 ˆ 0
                                                                3
                                                                           2
                                                                  2
                                                                     4 4
                                          n ˆ 4,    ö 4 ˆ a 0 (1 ÿ 4î ‡ î )e ÿî =2 ,  a 1 ˆ 0
                                                                     3
                                                                             2
                                                                4 2
                                                                        4
                                                                      4
                                          n ˆ 5,    ö 5 ˆ a 1 î(1 ÿ î ‡ î )e ÿî =2 ,  a 0 ˆ 0
                                                                3     15
                                            . . .    . . .
   326   327   328   329   330   331   332   333   334   335   336