Page 330 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 330

Series solutions of differential equations        321

                          We ®rst investigate the asymptotic behavior of ö(î). For large values of î, the
                                                                      2
                        constant 2ë ‡ 1 may be neglected in comparison with î and equation (G.8) becomes
                                                             2
                                                       ö0 ˆ î ö
                        The approximate solutions of this differential equation are
                                                              2
                                                      ö ˆ ce  î =2
                        because we have
                                            ö0 ˆ (î   1)ö   î ö   for large î
                                                   2
                                                             2
                                    2
                        The function e î =2  is not a satisfactory solution because it becomes in®nite as
                                                 2
                        î ! 1, but the function e ÿî =2  is well-behaved. This asymptotic behavior of ö(î)
                        suggests that a satisfactory solution of equation (G.8) has the form
                                                                 2
                                                    ö(î) ˆ u(î)e ÿî =2                     (G:9)
                        where u(î) is a function to be determined.
                          Substitution of equation (G.9) into (G.8) gives
                                                   u0 ÿ 2îu9 ‡ 2ëu ˆ 0                    (G:10)
                        We solve this differential equation by the series solution method. Applying equations
                        (G.2), (G.3), and (G.4), we obtain
                             1                            1
                             X                     k‡sÿ2  X                   k‡s
                                a k (k ‡ s)(k ‡ s ÿ 1)î  ‡   a k [ÿ2(k ‡ s) ‡ 2ë]î  ˆ 0   (G:11)
                             kˆ0                          kˆ0
                        The coef®cient of î sÿ2  gives the indicial equation
                                                     a 0 s(s ÿ 1) ˆ 0                     (G:12)
                        with two solutions, s ˆ 0 and s ˆ 1. The coef®cient of î sÿ1  gives
                                                     a 1 (s ‡ 1)s ˆ 0                     (G:13)
                        For the case s ˆ 0, the coef®cient a 1 has an arbitrary value; for s ˆ 1, we have a 1 ˆ 0.
                          If we omit the ®rst two terms (they vanish according to equations (G.12) and
                        (G.13)) in the ®rst summation on the left-hand side of (G.11) and replace the dummy
                        index k by k ‡ 2 in that summation, we obtain
                              1
                              X                                               k‡s
                                 fa k‡2 (k ‡ s ‡ 2)(k ‡ s ‡ 1) ‡ a k [ÿ2(k ‡ s) ‡ 2ë]gî  ˆ 0  (G:14)
                              kˆ0
                        Setting the coef®cient of each power of î equal to zero gives the recursion formula
                                                        2(k ‡ s ÿ ë)
                                              a k‡2 ˆ                  a k                (G:15)
                                                    (k ‡ s ‡ 2)(k ‡ s ‡ 1)
                          For the case s ˆ 0, the constants a 0 and a 1 are arbitrary and we have the following
                        two sets of expansion constants
                        a 0                                 a 1
                                                                2(1 ÿ ë)
                        a 2 ˆÿëa 0                          a 3 ˆ      a 1
                                                                   3!
                                                                             2
                                           2
                            2(2 ÿ ë)     2 ë(2 ÿ ë)             2(3 ÿ ë)   2 (1 ÿ ë)(3 ÿ ë)
                        a 4 ˆ      a 2 ˆÿ          a 0      a 5 ˆ      a 3 ˆ             a 1
                                                                   .
                               .
                              4 3            4!                   5 4            5!
                                           3
                                                                             3
                            2(4 ÿ ë)     2 ë(2 ÿ ë)(4 ÿ ë)      2(5 ÿ ë)   2 (1 ÿ ë)(3 ÿ ë)(5 ÿ ë)
                        a 6 ˆ      a 4 ˆÿ               a 0 a 7 ˆ      a 5 ˆ                   a 1
                               .
                                                                   .
                              6 5               6!                7 6               7!
                         .                                   .
                         . .                                 . .
                        Thus, the two solutions of the second-order differential equation (G.10) are
   325   326   327   328   329   330   331   332   333   334   335