Page 142 - Phase Space Optics Fundamentals and Applications
P. 142

The Radon-Wigner Transform     123


                                     Exit pupil
                                              Focal plane
                                             y
                                                        Observation
                                                   x       point
                                                          φ
                                                    ar N
                           a


                          Σ P        f
                                                 z


               FIGURE 4.7 The imaging system under study.

                 We now describe the monochromatic scalar light field at any point
               of the image space of the system in the Fresnel approximation. 21  It is
               straightforwardtoshowthat,withinthisapproach,thefieldirradiance
               is given by
                            1
                 I (x,z) =  2   2
                           ( f + z)
                                                                       2

                                                2
                                        −i z|x |        −i2


                        ×      P(x ) exp          exp         x · x d x
                                                                    2
                                          f ( f + z)   ( f + z)


                              P
                                                                    (4.48)
               where   is the field wavelength, x and z stand for the transverse

               and axial coordinates of the observation point, respectively, and   P
               represents the pupil plane surface. The origin for the axial distances
               is fixed at the axial Gaussian point, as shown in Fig. 4.7.
                 It is convenient to express all transverse coordinates in normalized
               polar form, namely,
                              x = ar N cos 	,  y = ar N sin 	       (4.49)
               where x and y are Cartesian coordinates and a stands for the maxi-
               mum radial extent of the pupil. By using these explicit coordinates in
               Eq. (4.48), we obtain
                ¯ I(r N , 	,z)

                             2  1



                      1                     i2 W(r , 	 )    i2 W 20 (z) r   2
                                                                      N
                                                  N


                =               ¯ p(r , 	 ) exp         exp
                                  N
                   2
                    ( f + z) 2

                            0 0
                                             
           2
                          −i2


                  × exp        r r N cos(	 − 	) r dr d	             (4.50)


                                                   N
                                               N
                                N
                         ( f + z)
   137   138   139   140   141   142   143   144   145   146   147