Page 144 - Phase Space Optics Fundamentals and Applications
P. 144

The Radon-Wigner Transform     125


               Thus we arrive at a compact form for the irradiance at a point in the
               image space

                              1
                ¯ I(r N , 	,z) =  2  2
                             ( f + z)
                                                                         2
                   1                          4  	              2
                                     i2 W 40 r N     i2 W 20 (z) r N


               ×     Q(r ,r N , 	,z) exp        exp               r dr
                                                                   N
                       N
                                                                      N

                  0
                                                                    (4.56)
               By using the mapping transformation
                                 1
                        r   2  = s + ,  Q(r ,r N , 	,z) = q(s, r N , 	,z)  (4.57)

                         N                N
                                 2
               we finally obtain
                               1
                ¯ I(r N , 	,z) =
                            2
                             ( f + z) 2
                                                                         2
                   0.5                      2

                                     i2 W 40 s     i2 [W 40 + W 20 (z)] s
                ×     q(s, r N , 	,z) exp      exp                   ds



                  −0.5
                                                                    (4.58)
               Note that in this expression all the dependence on the observation
               coordinates is concentrated in the mapped pupil q(s, r N , 	,z) and the
               defocus coefficient W 20 (z). If we expand the modulus square in this
               equation, we find
                                 1
                  ¯ I(r N , 	,z) =
                              2
                               ( f + z) 2
                            0.5
                          0.5                                   2    2
                                                         i2 W 40 (s − s )
                                         ∗

                      ×       q(s, r N , 	,z)q (s ,r N , 	,z) exp

                       −0.5 −0.5

                            i2  [W 40 + W 20 (z) ] (s − s )

                      × exp                         ds ds           (4.59)

               which by using the change of variables
                                    s + s
                                 t =     ,    u = s − s             (4.60)
                                      2
   139   140   141   142   143   144   145   146   147   148   149